Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Andy Goodwin joins First Graphite Limited

Posted By Terrance Barkan, Wednesday, September 20, 2017

 

Advanced materials company, First Graphite Limited (ASX: FGR) has announced the appointment of Dr Andy Goodwin as a consultant to the Company. 

For the last five years Dr Goodwin has been Business Director, Advanced Materials Division, at Thomas Swan & Co Limited in Consett UK. Thomas Swan and Co, a private company, is one of the leading graphene companies based in the UK.

Dr Goodwin has been primarily responsible for development and commercialisation of graphene products. Not only will Dr Goodwin be of great assistance to First Graphite as it prepares to take its products to the market, but his location in the UK will give the Company a valuable presence and capability in the important, expanding market for graphene in Europe. 

Prior to joining Thomas Swan Dr Goodwin was the Global Science & Technology Manager – Solar, for Dow Corning Corporation, in the USA. Dr Goodwin has a Ph.D. in Polymer Chemistry and an MTE Diploma from the International Institute for Management Development Business School in Lausanne, Switzerland. 

Dr Goodwin will take up his position with the Company in early October 2017. 

Commenting on this appointment, FGR’s Managing Director Craig McGuckin said 

“We are very pleased to have Andy joining our team. I believe his decision to join FGR validates the approach we have taken to progressing our advanced materials projects and IP. Andy has proven leadership capabilities with global teams and a successful track record of delivering results in both corporate and small business environments. His being based in the UK will be particularly helpful in assisting with working with our European and UK based clients. 

The board welcomes Andy to our growing team and looks forward to a long and mutually rewarding relationship”

 

Dr. Andy Goodwin likewise commented on his new role:

 

“I'm pleased to be joining the FGR team and helping to grow the business - FGR has a great position in high quality graphite RMs, a low cost graphene production process and an appetite for downstream opportunities. There's plenty to be excited about.”

Tags:  Andy Goodwin  First Graphite 

Share |
PermalinkComments (0)
 

Graphene and Industry: Where is the Disconnect?

Posted By Dexter Johnson, IEEE Spectrum, Monday, September 18, 2017

With buyers uncertain of how to integrate graphene into their products and suppliers often in a race against time to bring a product to market, can the gap be bridged?

The myriad industries that potentially can be impacted by graphene seems at times a bewildering blizzard of possibilities with no clear path on how to access any of them. If graphene does work for applications ranging from photovoltaics to advanced composites, how does it do it and how can those underlying industries extract the benefits from it for their products?

While the major chemical companies struggle with the learning curve of how they can best use graphene to enable their products effectively, graphene suppliers are struggling with the time it takes to walk those buyers through that learning curve.

“The biggest challenge is accelerating the testing of products with large companies to convince the rest of industry to make the change to incorporate a new material,” said Mark Thompson, Chief Executive Officer of Australia-based Tagla Resources, in a Q&A interview with The Graphene Council last month. Thompson added that in addition to the challenge of time, companies like his face the perennial problem of lack of investor and business knowledge of how graphene really works in an application.

Graphene suppliers face this lack of knowledge among their buyers almost universally. While some suppliers are better equipped to last out the long vetting process, the results are not just taxing to the financial stamina of small companies, but are impacting the overall business of graphene.

“We have encountered customers who are either using low-quality graphene, or graphene oxide in some cases, where they are not maximizing the potential of their products,” said Mr. Ho, Chairman of Perfect Right Limited, an Asia-based graphene producer and a subsidiary of Oovao Powers Holdings Limited, in a Q&A with The Graphene Council last June. “Until commercial applications of graphene-enhanced products become widespread and the application of graphene in products is better understood, we will continue to see a fragmented industry where end users are not able to maximize the potential of graphene in their products.”

While much work is done to improve manufacturing processes of graphene—both in terms of the quantity and quality of the product to improve industry uptake—these efforts both may be missing the larger point, which is to make a masterbatch material.

“I believe that in any industry you always start with the customer need. Quality is less important than functionality and price,” said Chris Gilbey, CEO of Australia-based Imagine IM, in a Q&A with The Graphene Council last March.  “What we focus on is developing fit-for-purpose graphene at the lowest possible price, and at a location that meets the supply chain objectives of customers.”

While this, of course, makes logical sense for any supplier, are the real-world experiences of graphene producers lining up their product with buyers’ expectations? UK-based Haydale Graphene Industries Plc has had an exclusive agreement with Huntsman Corporation to develop a graphene infused Araldite® epoxy resin, and according to Haydale’s CEO, Ray Gibbs, in an interview with The Graphene Council last month, it has been a journey. 

“There are no sales yet but it’s been good for us though because we've learnt an awful lot of know-how about how to mix, choosing appropriate dispersions methods, what cure protocol to adopt and how the surface activations of materials affect our materials,” said Gibbs in the interview. “One fundamental thing that it proved to us is that Huntsman did not want any change to the resin once we added in nanomaterials. Generally, adding nanomaterials at low levels will alter the viscosity and downstream processing methods. The minute you do that is when capital expenditure happens and that alerts the finance teams to cash outflows (often not in any budget). The key then is to avoid processing changes and the need for capital spend. The work has produced some fundamental know how on mixing, dispersion and processing.”

All the suppliers spoken to acknowledge that this learning curve needs to be shortened. Certification is cited by most as a way to shortcut through the quality assurance concerns for buyers. It would help the buyers to de-risk their business plans with graphene.

“We spend a lot of time going around the world doing a lot of presentations just trying to grow belief by providing verified data, which is crucial in getting the customer to say, “OK, it's not just been verified by the suppliers it’s been verified by an independent third party.” For me, that’s another area of credibility that needs to be driven by the industry,” said Gibbs.

Certification can be costly and the bodies that have established those certifications remain often in the planning stages. What remains is an educational process. And the responsibility of that education is increasingly being taken up by not just the graphene suppliers, but by industry groups, such as The Graphene Council.

Gibbs added: “I think the Graphene Council has got a role to play where it's important to inform and to get industry to think about the benefit derived from a consistent, quality supply of material.”

Tags:  buyers  certification  masterbatches  suppliers 

Share |
PermalinkComments (0)
 

£1m project to field-test graphene water filters

Posted By Terrance Barkan, Thursday, September 14, 2017

UK-BASED G2O Water Technologies is to scale up production and field-test its patented graphene oxide water filters in a new £1m (US$1.3m) project.

The funding for the project has largely come from UK government research funding arm Innovate UK, with the remainder provided by G2O's project partners, including speciality chemical manufacturer William Blythe.

G2O Water Technologies’ filters can be printed using a low-cost method, or made by applying a graphene oxide coating to polymer membranes. The graphene oxide coating makes the membrane more permeable, allowing more water to pass through and meaning up to 50% less energy is needed to drive the process. The company believes that it could one day result in being able to do away with the need for pumps for membrane purification systems and rely instead on gravity.

“As we are taking a porous polymer material as the substrate, and the filtration by size exclusion is happening in the surface layers of graphene oxide, it is expected to be significantly cheaper than some current membranes due to its simplicity. However, when this is packaged into a domestic system, eliminating the need for pumps, ozone, UV etc, it means that the purification system can be significantly cheaper too, potentially extending access to clean water to more people,” said Tim Harper, G2O CEO and founder.

The company hopes to develop and market cheap domestic water purification units for use inside the home, in areas of the world where the water supply is not reliably clean, with contaminants including pesticides, heavy metals and plastic microfibres. Products could range from a simple jug to more sophisticated appliances.  Harper says the company’s system “makes obtaining clean water as simple as making a cup of filter coffee.”

The new £1m funding will allow G2O Water Technologies to develop large-scale manufacturing processes for the filters using industrial printing technology. It will work with the Centre for Process Innovation (CPI) and  its industry partners. G2O will then embark upon field testing with a major global consumer products company with a significant market share in Asia and Africa, although the company did not reveal which. The project will last for 26 months, and G2O believes that a final commercial product using its filters could ready in three years.

The funding follows a previous £700m Innovate UK grant in 2015. Over the past two years, G2O has worked with the CPI to help transfer and scale up the technology from laboratory to industry.

“G2O’s graphene filter technology has the potential to dramatically reduce the cost of treating water, thereby increasing the availability of safe drinking water. This project provides us with the ability to validate and accelerate an innovative, emerging technology that can help us develop the next generation of cost-effective systems for clean, potable water. This is key to meeting diverse, consumer demand across the globe,” said Harper.

Original article by Helen Tunnicliffe

Tags:  G2O Water Technologies  Innovate UK  Water  William Blythe 

Share |
PermalinkComments (0)
 

Haydale: Looking to Make Material Change in the World Around Us

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, August 16, 2017

 

When people start looking into the commercialization of graphene and graphene-enabled products, one of the first companies they likely come across is the UK-based Haydale Graphene Industries PLC

This is due—at least in part—to the fact that Haydale has been around for a relatively long time in the graphene business and was one of the first publically traded graphene suppliers, not to mention it being one of the leading companies in the production of graphene from facilities in the UK, USA and the Far East.

Over the years, Haydale has established itself as one of the go-to companies if you wanted graphene to have just the right properties for the device you wanted to develop. The task of functionalizing and dispersing graphene so that it bonds with the resin or polymer matrix in which it is being used has proven trickier than many companies had initially thought, leaving the uninitiated mixing in batches of graphene to their product only to have it make the product worse rather than better. By providing the expertise on how to extract the attractive properties from graphene, Haydale has created the backbone of its business.

In recent years, Haydale has continued to move up the value chain offering its own devices based on its functionalized graphene.

Now Haydale has become one of The Graphene Council’s Corporate Members,  and we took that opportunity to talk to the company’s CEO, Ray Gibbs, to ask about the company’s most recent commercial developments as well as see how he sees the market evolving over time. Here is our interview:

 Q: Your purchase of Advanced Composite Materials, what did that give you that you didn’t have before and how has it changed your business?

The simple answer us it gave us a presence in the USA, which is a massive market—and gave us a base in the USA with meaningful sales. Also, we have a new nanomaterial that broadened our offering and is now part of our advanced materials Strategic Business Unit. The business itself had 15 plus blue-chip companies as clients. The aim is to cross sell some of our other nanomaterials, such as Graphene and Carbon Nano Tubes, into them. So that is really good news and even more so as we've grown that business with a new $2.6 million contract in April of this year.

 

Q: You have divided your business into two business units. Resins, Polymers, and Composites, which will concentrate on marketing and selling the newly developed graphene infused carbon fibre pre-impregnated materials (‘pre-preg’). The second unit, Advanced Materials, principally hosts the Group’s silicon carbide (‘SiC’) products and the newly developed graphene inks and pastes for the self-monitoring blood glucose device market. Why was this done and what do you anticipate it will allow you to do?

The key element to making these two strategic business units is focus. These business units are profit and loss driven.  Each has a dedicated managing director. One is based in the USA and that is Trevor Rudderham. He’s been on board from the time we bought the company, Advanced Composite Materials, in South Carolina. We also have a new person who has recently started named Keith Broadbent. Keith has come from Ultra Electronics, a large UK defense company. Before that he was running the production for prestigious Princess Yachts and Sunseeker International. So, he knows an awful lot about the composites industry.  This really is all about focusing on products and profits by driving sales in this fiscal year.

Q: Huntsman Corporation (‘Huntsman’) for graphene infused Araldite® epoxy resin. What’s happening there at this point? And what is Huntsman expecting to do with the epoxy resin? If it goes through, do you expect this to open up possibilities with similar big chemical companies?

We started our collaboration with Huntsman, a world leader in high end epoxy resins and adhesives, with an exclusivity arrangement about 18 months ago and it's been quite a journey. There are no sales yet but it’s been good for us though because we've learnt an awful lot of know-how about how to mix, choosing appropriate dispersions methods, what cure protocol to adopt and how the surface activations of materials affect our materials. One fundamental thing that it proved to us is that Huntsman did not want any change to the resin once we added in nanomaterials. Generally adding nano materials at low levels will alter the viscosity and downstream processing methods.  The minute you do that is when capital expenditure happens and that alerts the finance teams to cash outflows (often not in any budget). The key then is to avoid processing changes and the need for capital spend. The work has produced some fundamental know how on mixing, dispersion and processing. The overall effect produces a result which we call “functional intensity”.

Yes we've got an exclusive with Huntsman and they've been very prescriptive in telling other people that have approached them that they are working with Haydale and no one else, which is great news and very reassuring But in terms of that, they're honed their focus unashamedly on thermal conductivity. Why? Because thermal conductivity can improve thermoset output by up to 100%. In thick section moldings, such as wind turbine blades, for example, if you can reduce the exotherm reaction (heat) resulting from the “setting process” by 50% and the resin cure time by 50% then you have about a 100-percent increase in output. Not only that but the heat management produces a better-quality product, with less rejection and homogeneous cure. Now that is a pretty fundamental improvement if you look at the way that the composite industry is today and the production constraints that exist.

So Huntsman is all about better quality, and speed of output and being able to work on thicker structures. Of course, there is not only one aspect of the composites industry; you've got electrical conductivity some mechanical issues to address as well.  We have seen a 20% increase in mechanical performance of a carbon fibre composite, independently verified. That offers a potential weight saving of one fifth if you keep the same mechanical performance. Some of the other things that came out of that work has meant that we have been very successful improving aircraft composites. For example, in conjunction with Airbus and GKN we have produced an aileron that is 600 percent higher in its electrical conductivity, capable of defeating certain levels of lightning strike. Potentially our work could reduce the parasitic copper in an aircraft which can weigh up to 3 tonnes. Now that is a big thing for the aviation industry wishing to find ways of reducing weight.

Q: Haydale has become known as one of the most established expert companies on how to functionalize graphene in the precise way to make any given product possess the properties that your clients are attempting to achieve. Can you detail how that expertise evolved? Did each new customer provide new challenges and discoveries that led you to understanding how graphene can best be functionalized? Or was it just a matter of applying the same fundamental principles and practices to different clients? Or was it a combination of both?

The key thing is everyone's material—when they provide it—is different. Different shapes, sizes, flakes, thicknesses and it all comes with different levels of activated chemicals on the surface. So, if you've got a material that's come with a lot of oxygen on the surface, you're not going to get electrically conductive material because oxygen is an insulator and that may be inappropriate for certain applications. Hence, knowing and understanding the raw untreated materials is critical. That is something we have done for years now—we call it material fingerprinting—knowing what is on the surface of the material that we receive from a range of customers or suppliers is crucial. It may be that it's used with the functional groups already on the surface and it is compatible with the host material. On the other hand, it may not be suitable “chemically” for the application. And if it's not then we will use our own patented process to change the surface activation using our low temperature patented plasma technology. It's all about knowing and understanding what you've got and applying your own technique and processes to get the desired product improvement.

Q: We’ve seen some of your reported work with graphene inks to create film pressure sensors. Can you give us an update on that work and where it now stands commercially?

Several of these projects remain under non-disclosure agreements so that might be difficult to do. But we have got a number of things in the works with our patented pressure sensor. This derived from using our own proprietary inks by the Welsh Center for Printing and Coating at Swansea University. We have a five-year agreement with them that anything produced using our material we get right of first refusal on the intellectual property (IP). With the graphene loaded piezo resistive ink used to make the pressure sensor we filed a patent on this product. There is a range of things that we're looking at the moment, some in the sporting arena, some in protective elements and others in diagnostic mode—I can't really say much more! Suffice to say, we are in the process of getting applications moving from a commercial aspect and there’s a lot of potential activities to go at from adding pressure sensors on flooring to predict foot fall in the retail industry, to measuring impact on athletes engaged in contact sport for example. There are many industrial applications too offering massive opportunities. Its an exciting area, and all derived from Graphene.

Q: Is the aim of your company to move further up the value chain to producing devices that use your functionalized graphene? If so, what kind of devices are you looking to make and in what application areas? And how do you eventually seeing your company being arranged, i.e. 50 percent production of functionalized graphene for clients and 50 percent of your own production of devices based on your graphene?

I think if you look at the market place what you see is many producers trying to go up the value chain by providing some form of added value material. That material forms what I would call a master batch and it comes in many forms. For example, our conductive ink is form of a master batch because it’s using a resin—as a binder-based system—it’s adding graphene and other materials up to 40% to it to create a conductive screen printable ink. And we've been successful in the Far East in our new operation over there in producing some biomedical sensor inks. That's a part of the production line of a self-diagnostic biomedical device, which is blood glucose monitor.

By applying that same principle to what we just talked about with the Huntsman epoxy in terms of supplying a master batch into a customer so they can use as a concentrated form, a bit like a paste like the Coca-Cola syrup, for example: Customers receives the epoxy concentrate, dilutes it down with the neat base resin to what loading they want to use and you have a controlled process. That's really what I see. I don't envisage Haydale as a business selling anyone graphene flakes or powders because that frankly is a “me-too” commodity in my view. It also means we don't have the same element of control because the customer can take the graphene that you supplied—functionalized as appropriate—and it may or may not work because effectively they may have the wrong mixing and processing tools and protocols. And so we've got no control over that. Working with the customer in partnership is key.

What we have fundamentally is a supply chain set up through our collaboration partners, such as AMG in Germany who have some of our plasma reactors and they're ready to produce industrial quantities of masterbatch.

Q: What remains one of the biggest challenges in the commercialization of graphene-enabled products, i.e. price, quality of product, buyer awareness, etc.?

There is definitely a need for customer awareness of what can be done with nanomaterials. Everyone talks about standardization. A lot of the materials in the graphene space derive from effectively mined organic material, such as graphite. Graphite has been mined and sold for over 150 years but does not have any standards. But then you're dealing with things in the microscale as opposed to the nanoscale, which is one magnitude smaller than micro.

So effectively what you end up with graphite is small changes in supply impurities and the like make little or no impact if you put it into the industrial product like carbon brakes shoes or refactory linings.  Once you get to the nano-stage, knowing what you've got is very important as little impurities make a difference and therefore, yes, that is one important aspect of the whole process. 

For me, inconsistencies need to be the key message. Standardization is important and it will become very relevant particularly for large organizations seeking consistent volume supply; and I think what we've learned, particularly with the likes of Huntsman, for example, is that the two key questions they want to know is what is your disaster recovery plan for anything you supply us and do you have a more than one production site. Plus, secondly how robust is your supply chain. Those aspects will impact on people going forward.

I do think that the marketplace is getting itself ready.  Price is an issue where values for what appears similar products can be markedly different. The trained buyer will always look for the cheaper price but that may be a mistake especially if a material that is twice the price of another only needs a quarter of the loading of the cheaper material. Production is probably in advance of supply.  I’ve met many customers who tried nano materials before and said it doesn't work because I think probably they really didn’t understand what the material they had in terms of its functional group, its size, its morphology and the loading levels required. Agglomeration is an often-used complaint. Knowledge is beginning to permeate through the industry, which is good news. There’s lots of companies out there that are willing to take this on because when you change fundamentally products with very small doses of nanomaterials—we’re talking about under half of 1 percent here and sometime less—those massive changes can deliver real value.

Q: What do you think is the most important role for industry groups to play in helping to address those issues?

I think a lot of that is due to understanding of the marketplace. There is still a bit of hype that is still in the industry. Hype is not necessarily always bad as long as it is controlled. Hype helps generate ongoing research and development for all the processes and products. Hype goes astray when it makes exaggerated or wild claims that produce a distrust or misuse of materials in the marketplace. I think that's beginning to be understood. This is where the likes of the Graphene Council and others have a role to play in educating industry generally. We can use any help we can get to do that as we grow the market. There are too many providers chasing a market that is growing but is not large enough to satisfy production capacity today. If that isn’t rectified soon I would expect there to be casualties, and that is already happening.

We meet a number of companies that say, “I’ve tried carbon nanotubes, I’ve tried graphene and it doesn't work.” But in the past the engineer would actually say, “Oh well, I'll put more into this mix because it's bound to improve it.” In our nano world adding less is more. It’s an education process that for me is crucial in the industry we're in today.

I think the Graphene Council has got a role where it's important to inform and in to try to get industry to think about the benefit derived from a consistent, quality supply of material. We spend a lot of time going around the world doing a lot of presentations just trying to grow belief by providing verified data, which is crucial in getting the customer to say, “OK, it's not just been verified by the suppliers it’s been verified by an independent third party.” For me, that’s another area of credibility that needs to be driven by the industry.

A word of caution from someone who spends his life in this area: there are no magic products yet which will revolutionize the way we live. There is great hype surrounding the potential of graphene, but our experience tells us that we should be talking about evolution, not revolution. Our aspirations are great, but we will see transformation over time.

 We are already creating transformation, some things at a quicker pace than others. We have combined scientific knowledge, technological innovation and engineering know-how to create products that are significantly better than their predecessors. But we need opinion formers and august bodies to align with the producers and users of nano materials. This is where the likes of the Graphene Council, The National Graphene Institute in Manchester and the EU based Graphene Flagship have major parts to play.

 We absolutely believe there is so much more we can do and so much further than we can go, but to do so, we need to work in partnership with other major organizations who are the ‘early adopters’ those prepared to take calculated risks for that is where true economic returns arise – together we must go out into the new territories and explore what is possible. Eyes wide open!

 By doing so, we can work together to forge a better future for us all and ultimately, create material change in the world around us. That is the Haydale vision.

Tags:  graphene production 

Share |
PermalinkComments (0)
 

Talga Resources: From Raw Material to Functionalized Graphene for Cutting Edge Applications

Posted By Dexter Johnson, IEEE Spectrum, Tuesday, August 15, 2017

 

There are many different ways in which a graphene supplier can find its way into the marketplace. They might start off as research contractors in the field and discover a process for producing graphene that they believe has a competitive edge.

Another route is to start off in the mining of graphite—the material from which graphene is synthesized—and look into new avenues for exploiting their product.

One company that has followed this path is Australia-based Talga Resources, which mines its high quality graphite deposits in Northern Sweden and processes that ore into graphene that should be suitable for a wide range of potential applications.

Talga recently joined the growing list of The Graphene Council’s corporate partners at which time we took the opportunity to speak to Talga’s Chief Executive Officer, Mark Thompson, to ask him more about the direction of the company and their perspective on the issues facing the growing graphene marketplace.

 Q: Do you consider Talga Resources a mining company or an advanced materials company? Why one and not the other?

We see ourselves as an advanced materials company. This is because the majority of our output is functionalized and formulated graphene additive products produced in-house, and utilizes our own 100% owned technology in the product not just raw products.

Has this perception changed over time? Yes, the separation occurred first as we started developing our own processing technology in 2014 and moved to product development in 2016. Mining is now just one of our competitive advantages in owning our complete supply chain. We also have a range of valuable non-carbon mineral assets that can be developed such as cobalt and copper that are also part of the technology metals and clean-tech supply chain.

Q: What kind of graphene are you producing, i.e. how is manufactured and what applications is best suited for? 

We electrochemically exfoliate our graphite ore directly into pristine graphene nanoplatelets and a few layers graphene, not graphene oxide.  We do in-house functionalization then to create dispersion and product performance, such as conductivity or adhesion. But it is a tunable process so we can produce a range of graphene particle morphologies.

We are using these morphologies successfully in a variety of coatings, batteries, composites and concrete products. Obviously these are large volume current markets where our economics and scale can provide the material solution, as compared to CVD type applications. 

Q: Are you functionalizing the graphene in any way?

Yes, we do in-house chemical functionalization.

Q: How far up the value chain to ultimately expect to be moving in the graphene market, i.e. do you foresee you producing actual devices from graphene or will you continue to supply others with graphene to make products?

We can supply raw or basic value-added products directly, but tend away from retailing and towards formulated solutions and product systems, that can be master batches or incorporated into a current product process line. 

Q: What do you see as the biggest challenge in the graphene market at large and how does that translate into challenges for your business?

Time. The biggest challenge is accelerating the testing of products with large companies to convince the rest of industry to make the change to incorporate a new material. Down the road will be process controls for quality and consistency, and the perennial problem of lack of investor and business knowledge of how graphene really works in an application.

Q: You are an Australian-based company with mining operations in Sweden. Are you producing the graphene in Europe or Australia?

All graphene is produced in Europe, with bulk raw materials made at our test process facility in Rudolstadt, Germany and the UK subsidiary based in Cambridge responsible for product development.

Q: What sort of advantages does having operations on two continents provide you and what are the challenges?

The advantage of having our downstream and upstream processes separated is that they can be more flexible and faster to develop.  The challenge is that they are spread out but they will be consolidated more once the first commercial plant is built in Sweden.

Q: What sort of efforts are needed for the graphene market as a whole to improve uptake by the various application markets that are impacted by it, i.e. standardization, dissemination of information, industry advocacy?

I believe graphene producers should do less raw supply and more value-added or advanced prototype products.  With current market relevance and pricing it will improve uptake faster than regulation, standards and info. Proof of performance at scales bigger than the lab will lead faster to commercial outcomes than providing raw materials to end users without skills to incorporate it.

Q: How do you see the graphene business evolving over the next five years and what do you aim at making Talga Resources role in that business? 

The graphene business will undergo a great deal of failures and M & A activity while commercialization grows in the background with a few key companies. Most will migrate from raw material and basic dispersions to more formulated value-added additives targeting specific products in collaboration with industry. This will be on current market products, not futuristic aspirational products. Talga is already ahead on this path and aims to be a very profitable and global leader in graphene enabled products well within 5 years.

Tags:  graphene production  graphite 

Share |
PermalinkComments (0)
 

Case Study: Graphene-Based Coating Reduces Costs of Fluid Storage Systems

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, August 2, 2017

Australian-based Imagine Intelligent Materials has released a new case study that looks at the commercial deployment of a new type of conductive geotextile, made possible with the company’s imgne® X3 coating. The new graphene-based material is used as part of a solution developed by fluid storage tank company, called Concept.

Concept builds fluid storage systems that have many applications within the mining industry, including fluid processing facilities, irrigation water storage, dust suppression water storage, construction water, potable water and grey water at camps.

These fluid storage systems consist of large steel or concrete tanks that are lined with four different types of liner systems: primary liner, composite net layer, leak detection layer (secondary layer) and geotextile cushioning layer.  

It is within the composite net layer (Geomembrane/Geonet) that Intelligent Materials’ imgne® X3 coating is used to separate the leak detection system from the primary layers and to assist in the flow of water.

When these liner systems were used prior to the introduction of the imgne® X3 coating in the composite net layer, it was necessary to wet this layer with water to make it conductive, which added cost and complexity to the project.

In addition to the extra costs of shipping in water, the previous arrangement led to false positives in the lead detection system.  The water used to wet the layer between the primary and secondary liners often led to false leak reports in the leak detection system

The case study with the imgne® X3 coating on the composite net layer eliminated the need to wet the material—a boon for locations that are remote and the climate is arid.  This absence of water needed to wet the material to make it conductive also eliminated the false positives.

In the video below, you can learn more about Imagine Materials' imgne® X3 coating operates.

 

Tags:  conductivity  graphene coating  leak detection 

Share |
PermalinkComments (0)
 

The World’s Largest Graphene Community Adds Tenth Corporate Member

Posted By Terrance Barkan, Monday, July 31, 2017

The efforts of The Graphene Council in providing information to the graphene community receives strong corporate support. 

 

The Graphene Council, the largest member-driven community in the world focused on graphene research and commercialization, has reached a key milestone by adding its tenth corporate member bolstering its efforts in representing and providing information to the graphene community. 

 

The newest members, UK-based Haydale Graphene Industries  and Australia-based Talga Resources, join an international group of leading graphene companies that includes Montreal-based NanoXplore, Australia-based Imagine Intelligent Materials (Imagine IM), UK-based Applied Graphene Materials, Norway-based CealTech AS,   UK-based William Blythe, Hong Kong-based Perfect Right Limited (Oovao Powers) and Australian First Graphite. In addition the US-based association SPIE—the International Society for Optics and Photonics has also seen value in becoming a Corporate Member and taking advantage of up-to-date market intelligence and other benefits.

 

Representing graphene producers on four continents, these leading companies and association recognize the value of sharing and disseminating information across an open platform where the views and issues surrounding graphene research and commercialization can be advanced.

 

“Partnering with other organizations to further the sharing of information and enhancing the discussion around technologies not only helps SPIE meet its charter but, more importantly, enables the advancement of research, science, engineering and practical applications in these technologies,” said Robert F. Hainsey, Ph.D., the Director of Science and Technology for SPIE.

 

Established in late 2013, The Graphene Council quickly developed the largest LinkedIn group in the field of graphene and an even larger private community with 8,500 members. It has significantly expanded its reach and impact through original market survey reports and by providing original content in newsletters, articles and blogs.

 

One of the first providers of online webinars dedicated to the commercial issues surrounding graphene, The Graphene Council has also researched and published one of the most extensive surveys of companies producing graphene on the status of commercialization and highlighting major issues. This survey has also served as a key document in government-led analysis of the graphene market.

 

The Graphene Council is also the sole provider of the 2017 Bulk Graphene Pricing Report, the most up-to-date and detailed analysis of how graphene can compete in application areas that includes composites, thermo plastics, 3D manufacturing, rubber and plastics, cement, lubricants and many others.  

 

The Graphene Council has also partnered with Springer Nature publications to publish the first academic journal dedicated to applied graphene research and analysis, The Graphene Technology Journalthe first full issue will be published in September 2017.

 

As a formal member of the ISO/ANSI TC 229 Nanotechnology Standards Development Group as well as the IEC TC 113 Nano-Electrotechnologies, the Graphene Council is at the forefront of the development of graphene standards that will benefit graphene suppliers, buyers and users.

 

For more information about joining the leading community in the world for graphene professionals, please visit The Graphene Council.

 

Contact:

 

Terrance Barkan CAE, Executive Director
Direct:  +1 202 294 5563

tbarkan@thegraphenecouncil.org


Tags:  Applied Graphene Materials  Bulk Graphene Pricing  CealTech  First Graphite  Graphene Technology Journal  Handle  IM  Imagine Intelligent Materials  NanoXplore  Oovao Powers  Perfect Right Limited  SPIE  Standards  Talga  William Blythe 

Share |
PermalinkComments (0)
 

Perfect Right Limited (Oovao Powers)—Insights from Hong Kong-based Graphene Producer

Posted By Dexter Johnson, IEEE Spectrum, Friday, June 23, 2017

 

The Graphene Council’s industrial partners span from North America to Europe and all the way to Australia. But our latest industrial partner hails from Hong Kong and as such represents the Council’s first Asian corporate partner.

It is sometimes difficult to learn how Asia-based graphene producers see the graphene marketplace and how they see themselves fitting into the overall scheme of things. So our interview with Mr. Ho, Chairman of Perfect Right Limited, a subsidiary of Oovao Powers Holdings Limited, provided us with a unique opportunity to learn about an Asia-based graphene producer that moved beyond marketing materials.

What we can learn from those marketing materials is that Perfect Right Ltd. developed its low-cost process for producing high-quality graphene this year. What you will learn in this interview is what that process is, how they are functionalizing their graphene and how and when they intend to move up the graphene value chain.

The details contained in this interview will provide us with key insights on how this company sees its place in the marketplace now and well into the future.

Q: Can you please tell us what kind of process you have developed for producing a high-quality graphene in bulk quantities, i.e. chemical vapor deposition, liquid-phase exfoliation, plasma, etc.?

We synthesize graphene with an arc-discharge method.  The electric arc oven for synthesis of graphene mainly comprises two electrodes in the atmosphere of air.  The cathode and anode are both pure graphite rods. As the rods are brought close together, discharge occurs resulting in the formation of plasma.  

Q: How have you improved on one of these processes to make it produce a higher quality of graphene at bulk quantities?

We have enhanced and patented our new production method, including the modification of production equipment, which produces high quality graphene that retains graphene’s desired properties, using a low current to create the arc discharge, effectively lowering the cost of production significantly.  Our solution is also scalable, and we are able to ramp up production of our high quality graphene in accordance with market demand.  We already have full production lines running at our factory, and we plan to expand our production capability as demand for our high quality graphene ramps up.  We are continuing to fine tune various parameters in the production process, resulting in a continuous improvement in the quality of the graphene being produced in both purity and domain size, as evidenced by independent lab test results. Our production process is cost effective and completely environmentally-friendly.

For what applications have you functionalized your graphene? I see that many applications of graphene have been identified on your website, but for what specific applications are you functionalizing your graphene?

We are focused on the functionalizing graphene in the areas of energy storage, supercapacitor, coatings, and focused on utilizing the conductive properties of graphene in various applications.  We are currently working with organizations in academia and industry, developing promising applications in the areas mentioned above, and aim to have commercial applications which are ready for market within the next 12 to 18 months.

What is your business model, i.e. are you producing master batches of functionalized graphene for various device manufacturers or are you producing these functionalized graphene materials for your own device manufacturing? If so, what are those devices or technologies?

We currently have our scalable production lines producing high quality graphene for use in the applications being researched, working in collaboration with organizations in academia and industry to bring to market consumer ready solutions which maximizes the unique properties of graphene.  Our business model is to solidify and scale our graphene production, and in lock step develop commercial applications using our high quality graphene.  We believe graphene applications has so far eluded the wider consumer market due to the lack of high quality and stable graphene supply being made available at cost effective prices.  We believe our production method is the solution, as we will be able to provide high quality graphene at prices which will make the consumer applications cost effective, leading to wider adoption of graphene in even more applications. 

What are the greatest challenges your company currently faces in the marketplace, i.e. cautious customers unsure of a new material for their processes, a stable value chain, etc.?

We believe our challenges are twofold, product differentiation and application. There are numerous graphene producers in the market; however, there seems to be a wide range in terms of quality and supplies available.  We have encountered customers who are either using low quality graphene, or graphene oxide in some cases, where they are not maximizing the potential of their products.  As for application, we believe that is an issue that faces all companies in the graphene space.  Until commercial applications of graphene enhanced products become widespread and the application of graphene in products better understood, we will continue to see a fragmented industry where end users are not able to maximize the potential of graphene in their products.

What do you see as the key to success for graphene establishing a foothold for itself in the marketplace, i.e. a ‘killer app’, standardization in graphene, etc.?

We believe standardization of graphene will go a long way towards the adoption and wide spread use of graphene.  Through our market research and interaction with academia, investment funds, and potential end users, one common theme is that there is a wide range of graphene products already in the market, but the lack of standardization makes it very hard for users to compare products, or to even secure a stable supply for their own use.  Another milestone is to have a wide spread consumer facing application where the advantages of using graphene in that product is immediately recognizable.  Graphene has been in the news for some time, however there are still no breakthroughs in the areas which graphene is known to be good for, e.g. energy storage, applications taking advantage of its conductivity, etc.

Where do you see your company in the next five years?

We see ourselves as being one of the premier suppliers of high quality graphene in the Asia region, and also an enabler of the commercialization of graphene enhanced products, through our partnerships with academia and industry players.  We aim to have graphene enhanced products on the market within the next two years, and will focus on projects where the successful commercialization of that product will help push the entire graphene industry forward.

Tags:  Asia  batteries  graphene  production 

Share |
PermalinkComments (0)
 

NanoXplore Goes Public, Creating New Capital for its Business Ventures

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, June 21, 2017

 

Earlier this month, Montreal-based NanoXplore announced its intentions to become a publicly traded company on the Toronto stock exchange by what has been termed an “arm’s length reverse take over" of Graniz Mondal Inc. This transaction will amount to NanoXplore taking the place held by Graniz on the Toronto stock exchange as a publicly traded company.

“You have two ways to go public: You can do it through an initial public offering. Or you can do a transaction with an already existing company in the public markets, which is a so-called shell and use that shell to become public,” explained Soroush Nazapour, president and CEO of NanoXplore in an interview with The Graphene Council.

Nazapour estimates that the transaction should be completed by the end of August at which time NanoXplore will begin trading.

The minimum amount of capital that has to be raised through the public offering will be $2 million. However, Nazapour expects that the company will raise capital far above that figure, which will go to provide working capital and also support the $10-million Sustainable Development Technology Canada (SDTC) program it was awarded last year.

The SDTC program is an attempt by the Canadian government to develop graphene-enabled polymers that could replace metal components in electric vehicles for reducing weight. Developing polymers that have the electrical, thermal and mechanical properties of metals has been a challenge, and the aim of this project will be to see if graphene can lead to polymers with these properties. This project is expected to last a total of five years.

“In the automotive industry a lot of parts are either metals or plastics that don't have the performance required,” explained Nazapour. “So what we're doing is adding graphene to the plastic to improve the performance of those plastics and replacing the metal with these improved plastics.”

In the video below, the rationale for pursuing graphene-enabled polymers, especially for transportation applications, is laid out.

While the SDTC program could eventually lead to an entirely new business segment for the company, NanoXplore has announced top line revenues of $2.5 for the first nine months of this fiscal year. Nazapour expects that growth rate to continue until the end of the fiscal year, leading to approximately $3 million in top line revenues. These revenues are generated from the graphene-enabled buoys that are used in aquaculture industry.

Nazapour expects that the capital generated from being publicly traded will support these ongoing operations as well as the SDTC program. But he is also looking ahead to further developing NanoXplore’s ambitions to manufacture graphene-enabled Li-ion batteries.

In addition to the pending introduction to the Toronto exchange, NanoXplore also has a new website from when we last interviewed Paul Higgins, the chief operating officer at the beginning of this year.  With the new website also comes a new corporate logo.

Tags:  grahene-enabled polymers  Li-ion batteries  publicly traded  stock exchange 

Share |
PermalinkComments (0)
 

Graphene and CMOS Become One, Offering New Hope in Electronics

Posted By Dexter Johnson, IEEE Spectrum, Friday, June 9, 2017

 

 

Complimentary metal-oxide semiconductors (CMOS) have served as the backbone of the electronics industry for over four decades.  However, the last decade has been marked by increasing concerns that CMOS will not be able to continue to meet the demands of Moore’s Law in which the number of transistors in a dense integrated circuit doubles approximately every two years. If CMOS is going to continue to be a force in electronics, it will become necessary to integrate CMOS with other semiconductor materials other than silicon.

It appears that research out of The Institute of Photonic Sciences in Barcelona (ICFO) and supported by The Graphene Flagship has found a way to integrate graphene into a CMOS integrated circuit

In research described in the journal Nature Photonics, the ICFO researchers combined the graphene-CMOS device with quantum dots to create an array of photodetectors.

While the photodetector arrays could enable digital cameras capable of seeing UV, visible and infrared light simultaneously, the technology could have a wide range of applications, including microelectronics to low-power photonics.

“The development of this monolithic CMOS-based image sensor represents a milestone for low-cost, high-resolution broadband and hyperspectral imaging systems" said, Frank Koppens, a professor at ICFO in a press release.

Koppens, who The Graphene Council interviewed back in 2015believes that "in general, graphene-CMOS technology will enable a vast amount of applications, that range from safety, security, low cost pocket and smartphone cameras, fire control systems, passive night vision and night surveillance cameras, automotive sensor systems, medical imaging applications, food and pharmaceutical inspection to environmental monitoring, to name a few."

The researchers were able to integrate the graphene and quantum dots into a CMOS chip by first depositing the graphene on the CMOS chip. Then this graphene layer is patterned to define the pixel shape. Finally a layer of quantum dots is added.

“No complex material processing or growth processes were required to achieve this graphene-quantum dot CMOS image sensor,” said Stijn Goossens, another researcher from ICFO in Barcelona. “It proved easy and cheap to fabricate at room temperature and under ambient conditions, which signifies a considerable decrease in production costs. Even more, because of its properties, it can be easily integrated on flexible substrates as well as CMOS-type integrated circuits."

The graphene-enabled CMOS chip achieves its photoresponse through something called the photogating effect, which starts as the quantum dot layer absorbs light and transfers it as photo-generated holes or electrons to the graphene. These holes or electrons move through the material because of a bias voltage applied between two pixel contacts. The photo signal triggers a change in the conductivity of the graphene and it is this change that is sensed. Because graphene has such high conductivity, a small change can be quickly detected giving the device extraordinary sensitivity.

Andrea Ferrari, science and Technology offficer of the Graphene Flagship added: "The integration of graphene with CMOS technology is a cornerstone for the future implementation of graphene in consumer electronics. This work is a key first step, clearly demonstrating the feasibility of this approach.”

Tags:  CMOS  digital cameras  graphene  low-power photonics  quantum dots  The Graphene Flagship 

Share |
PermalinkComments (0)
 

Simple Approach for Producing Pure Graphene Opens Up Applications

Posted By Dexter Johnson, IEEE Spectrum, Thursday, May 4, 2017

 

Image: U. Landman and B. Yoon

One of the key challenges in developing next-generation electronics based on graphene has been the costly and complicated processes of getting single-layers of graphene. To produce these pure versions of graphene that are suitable for the electronic applications the most common methods have been either mechanical exfoliation, in which one-atom thick sheets of graphene are pulled away from graphite, or Chemical Vapor Deposition (CVD) in which a carbon precursor is heated with the carbon condensing on a substrate such as copper or silicon. 
 
When solution-based techniques have been used in the past, the graphene is not in the form that has been proven to possess the material’s remarkable properties, like conductivity.

 

Now an international team of researchers working together through the Georgia Institute of Technology is reporting on a new method for producing graphene that uses a gradual heating process of a single precursor—ethylene—to very high temperatures. The researchers expect that this simple and an inexpensive approach to producing graphene could expand its applications.

In research described in the Journal of Physical Chemistry C, the researchers used ethylene, which is the smallest alkene molecule, containing just two atoms of carbon, and gradually heated it to 700 degrees Celsius, to create pure layers of graphene on a rhodium catalyst substrate.

“Since graphene is made from carbon, we decided to start with the simplest type of carbon molecules and see if we could assemble them into graphene,” explained Uzi Landman, a professor at Georgia Tech who headed the theoretical component of the research, in a press release. “From small molecules containing carbon, you end up with macroscopic pieces of graphene.”

This work is not the first time that scientists have attempted to produce graphene by using hydrocarbons like ethylene as a precursor. Those attempts failed, producing little more than carbon soot rather than a structured graphene.

The researchers were undeterred by previous failures because theoretically this stepped heating approach of ethylene should lead to the formation of a series of structures when the hydrogen atoms break away from the ethylene molecules and the carbon atoms self-assemble into the honeycomb pattern of graphene.

To overcome the previous lack of success, research groups in Germany and Scotland instead of simply heating the ethylene heated the material with a rhodium substrate in a vacuum. What they found was that the ethylene adsorbed onto the rhodium catalyst, changing through coupling reactions to create one-dimensional structures of polyaromatic hydrocarbons.

When these structures are heated further they go from being one-dimensional to two-dimensional materials. Just before the graphene is finally formed, the researchers observed round disk-like clusters containing 24 carbon atoms spread out to form the lattice structure of graphene.

“The temperature must be raised within windows of temperature ranges to allow the requisite structures to form before the next stage of heating,” Landman explained. “If you stop at certain temperatures, you are likely to end up with coking.  All along the way, there is a loss of hydrogen from the clusters. Bringing up the temperature essentially ‘boils’ the hydrogen out of the evolving metal-supported carbon structure, culminating in graphene.”

Currently, in its final form the resulting graphene structure is adsorbed onto the catalyst. While for this final structure is satisfactory for the demonstration, for other applications the graphene will need to be removed from the substrate.

Landmann added: “This is a new route to graphene, and the possible technological application is yet to be explored.”

Tags:  electronic applications  Georgia Institute of Technology  graphene manufacturing  mechanical exfolation 

Share |
PermalinkComments (0)
 

Who Will Win the Race for Clean Water Technologies Using Graphene?

Posted By Dexter Johnson, IEEE Spectrum, Monday, April 10, 2017

 

Image: University of Manchester

Graphene can take on at least three distinct technology approaches for producing clean water, according to Miao Yu, a professor at University of South Carolina and founder of UK-based G2O Water Technologies Ltd. as he explained to The Graphene Council last year in a interview.

In that interview, Yu said the first approach of the three is to use graphene in the creation of functional coatings. The second approach involves producing lamellar structures with nano-channels, which requires using fine layers of alternating types of materials. G2O Water is doing a bit of both of these approaches by creating a functional coating that can be applied to today’s polymer water membranes, and also creating scalable fabrication of lamellar structures of graphene oxide.

The third approach is to allow selective permeation through structural defects of single-layer graphene or graphene oxide. A group at MIT is probably the most notable example of the use of this approach in a technique they reported on three years ago. 

All of these approaches to using graphene in water applications is taking on increased interest after news came out last week that researchers from the University of Manchester have developed a graphene oxide membrane that in addition to filtering out small particles has small enough pores that it can filter out salt ions. This approach, which was published in the journal Nature Nanotechnology, falls into the approach taken by the MIT researchers.

The Manchester researchers have managed to overcome a key problem in this approach when the membranes swell up after being immersed in water for some time, allowing smaller particles to continue to pass through.

“Realization of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” said Rahul Nair, a professor at the University of Manchester and one of the co-authors of the research, in a press release. “This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes.”

Of course, the imprimatur of the University of Manchester on anything to do with graphene suddenly makes this latest research noteworthy. However, the final arbiter on whether this graphene approach or the others like it for either desalinating or purifying water remains squarely on the industry.

While the mainstream press--like the BBC--has seemingly ignored all other efforts for using graphene in the desalination or purification of water--setting up the Manchester research as a kind of first in the field--the trade press has been a bit more circumspect.

The publication Water & Wastewater International (WWi) has a pretty thorough assessment of the latest Manchester research and how it stacks up to other efforts for desalinating water using graphene.

While WWi remains pretty sanguine about the general prospects of using graphene for water desalination, they get some expert opinions that characterizes this latest research as something of a long shot at this point.

Graeme Pearce, principal at Membrane Consultancy Associates (MCA) told WWi in an interview: "The development at the University of Manchester aims to produce a membrane with a highly controlled character, free from defects. Given the materials used, longevity should also be good. The challenge will be whether the membrane can be effectively used with the current form factor (the spiral wound element mounted in series in long pressure vessels) and using current process design concepts.

"Alternatively, the membrane might be better exploited by a completely different approach to process design, which would be high risk and slow to introduce, but might have a much greater long term impact if the improved membrane can be exploited more efficiently."

He added: "The key issue would be to demonstrate both performance and longevity in the first instance and then establish what features of the current approach to desalination plants limit the benefits of a new membrane and what can be done to remove these impediments."

It turns out that the technology of G2O Water technologies might have the inside track at this point, according to Pearce.

He added: "This preserves the form factor and should be more easily adopted by the industry. The development is still early stage and the longevity of the coating has yet to be established, but the approach appears to be promising and initial results on performance enhancement have been encouraging. This is more likely to allow a radical optimization of existing practice rather than the potentially more revolutionary but higher risk development from Manchester."

Tags:  G2O Water Technologies  graphene oxide  membranes  University of Manchester  water desalination  water purification 

Share |
PermalinkComments (0)
 

Imagine IM Reimagines Graphene Business Strategies

Posted By Dexter Johnson, IEEE Spectrum, Friday, March 31, 2017

 

 

Australia-based Imagine Intelligent Materials (Imagine IM) was launched back in 2014 by a divergent group of scientists, engineers and business leaders that recognized that the time was right for launching a business that made devices from graphene.

A couple of the keys to Imagine IM’s business strategy have been to control their own supply chain and to produce devices that really depended on graphene rather than just lending a marketing tag to a product that was not improved by graphene. To do this, they opened their graphene pilot plant in Geelong, Victoria, Australia in August 2016 with a capacity of up to 10 metric tonnes of graphene per year.

This plant will provide the material that the company will use to create smart materials for detecting stress, temperature and moisture. These smart materials can be offered as “drop-in” solutions for large-scale manufacturing processes.

As an example of this, Imagine IM has partnered with Geofabrics Australasia to develop a leak location system that employs “a conductive non-woven geotextile in between two non-conductive membranes to allow the detection of defects in the membrane.” 

In a the Q&A provided below, we speak to Imagine IM’s CEO, Chris Gilbey, to find out more about the relationship between their graphene production and device manufacturing and learn about how he sees the nascent graphene industry shaping up over both the short- and long-term.

Q: You are involved in both the manufacturing of graphene—with a production capacity of 10 metric tonnes per year—and using graphene to make smart materials for sensing temperature, stress and moisture. I was wondering if you could breakdown your business with a bit more detail. Are you actually manufacturing devices for sensing, or are you producing master batches for other device manufacturers to make the devices?

Our view is that that graphene is not a product. It’s a means to make products. And you can't make the appropriate graphene unless and until you understand what the end product application is going to be, what the functionalization requirements are, what the plant and product requirements are, etc.  We want to deliver solutions...and it happens that graphene turns out to be a highly efficient way to achieve some things as long as you understand what the rules of the supply chain are that you want to work in.

Q: Could you describe the graphene that your plant produces? What is the quality of the graphene and what applications is it suited for?

We make multilayered graphene in the plant we have built. But frankly it’s not about the graphene. It’s about the process of developing a masterbatch material. The quality is the wrong question to ask frankly. Quality with respect to what criteria? If you measure quality in terms of size of nanoplatelets and you make platelets that are 75 microns in size hypothetically and the application requires you to make graphene that that will fit into a 50-micron fiber then you have a mismatch. Quality at this point in the evolution of graphene applications is a largely misunderstood proposition in my view.

I believe that in any industry you always start with the customer need. Quality is less important than functionality and price. Rolls Royce might be a bench mark of quality in the automotive sector or perhaps they may be more correctly a benchmark of luxury. What then is quality? Back in the early days of GM the board of the company would have argued that they made quality autos. But Alfred Sloane and also Peter Drucker would perhaps have argued that they had incomplete information from the field and, as a result, made determinations that were entirely out of sync with reality!

What we focus on is developing fit-for-purpose graphene at the lowest possible price, and at a location that meets the supply chain objectives of customers. At this point in time, our focus is on developing appropriate levels of conductivity in materials—in particular industrial fibers and fabrics. Conductivity is a pre-requisite of delivering sensing.

Q: Is the idea that your 10 metric tonne production capacity will fulfill your own internal needs for master batches or device manufacturing? Or do you intend to sell some of that production to other companies?

No point in selling graphene to anyone. Not enough sustainable margin plus volume to make it into a business. Graphene as a feedstock material is in the early stages of being commoditized. More people will bring production on line, at lower prices, and many of the players will get into a race to the bottom on price. After all, there are already Taiwanese and Chinese companies boasting of >100 tonnes per year capacity. That is not the business we are in.

Q: Do you have a five-year plan on that production capacity? In other words, do you foresee that will be meeting your market needs in five years or will you have to increase capacity? What are your current operating rates?

Short answer is that if our vision was to only need to produce 10 tonnes per year in five years, we would have already died and gone to heaven. 10 tonnes will satisfy one product sku in Australia. We are in discussions currently to set up a plant in the US that will get us started in that market - just started!

The answer is in any event that you have to have distributed manufacturing that is close to your end use application in order to be part of mass manufacturing supply chains. I would anticipate market needs in tonnages greater than 100 tonnes for that one sku in a global scenario. At the end of the day, we want volume, volume, volume.

Q: How did you come to focus on the smart materials market? Was it something inherent in the graphene that you produced that lent itself to this application area? Or did you see an unmet need in the marketplace and then tailored your graphene for this use?

Actually the strategy is to reframe the concept of unmet needs and look at it through an economic lens. The intention is to become a disruptive player in mass manufacturing in the first instance and to be able to make smarter products at lower prices where we can positively impact the economics of products; i.e. there may be a need that is currently met, but if we can make a solution that radically changes the economics we get to win.

Q: As one of the early graphene manufacturers, what do you see lacking in today's graphene supply chain, i.e. lack of industry standards, poor understanding among users of graphene’s capabilities, etc.?

Simple answer: Certification. Industry standards are going be like legal structures for copyright. They will always trail the reality of disruptive technology. Why is Netflix such a powerhouse now? Because they figured that most people would prefer to purchase content legally than steal it, and the studios couldn't get their heads out of their backsides.

However, most manufacturers don't just want for there to be a QA process. They have to have it in order to be able to de-risk their businesses. At the center of our business is the concept and the reality of certification. It’s proprietary, just as the Dolby Labs certification process is, and the WL Gore certification process is. We have just started, funded in part by a federal government grant in Australia, a Graphene Supply Chain Certification and Research Facility at Swinburne University in Melbourne. This is the first of its kind worldwide and will enable us to look at the impact of the almost infinite permutations of changes to materials that take place in the nano-domain.

Q: What sort of movements and developments do you expect to see in the graphene marketplace over the next 5-10 years? Will applications become more narrow and defined or broader and dispersed? Will digital electronics become a reality or an afterthought? Any thoughts on the future?

All I can say to that is that I firmly believe that applications that utilize nanomaterials will be ubiquitous in 10 years. Equally, I think there will be a massive shake out in the marketplace. One company in the UK is rolling up a bunch of the early-stage graphene start-ups that couldn't get product to market. I think that the Gartner hype curve is playing itself out as one would anticipate and there will be a tremendous amount of consolidation over the next few years.

Companies like Samsung will be dominant in electronics applications as they pertain to consumer electronics (along with several Chinese companies). The bottom line for me is that the people who focus on selling graphene will be marginalized over the next ten years. Mass manufacturing is where the money will be. 3D printing will be a small business for quite a while yet. The big chemicals companies and the PE companies that have a focus on chemicals and advanced materials will remain the smartest guys in they room—meaning that BASF, DuPont, and similar will stand on the side lines and will pick off the little guys as they run into trouble. And somewhere in there a Google will emerge that redefines the whole sector...and a bunch of shareholders will make a lot on the way through and a bunch will lose out... And the Chinese may come through as the dominant country in the space... And hopefully we will find ourselves on the positive side of the ledger...

The bottom line is that anyone who thinks that they are going to make money out of graphene from applications that use only small amounts will find that their business models are unsustainable. Mainly because it is in no one's interest (who is a supplier) to sell small quantities of a material except with a giant margin and that doesn't incentivize you to develop scale....

I find this area of human enterprise to be utterly fascinating! And if you read for instance, what Danny Kahneman did, when he was asked to advise the Israeli army and air forces on how to identify future leaders and how his advice ran absolutely 180 degrees contrary to what was in place at the time, and the success of his research and approach, to me that is what is going to be needed conceptually to build an industry!

Tags:  graphene  graphene production  smart materials 

Share |
PermalinkComments (0)
 

Graphene-Based Transistor Opens Up Terahertz Spectrum

Posted By Dexter Johnson, IEEE Spectrum, Friday, March 10, 2017

Terahertz radiation represents a range of the electromagnetic spectrum extending from the highest frequency radio waves to the lowest frequency infrared light. While many attempts have been made to create compact, solid-state devices that can harness it, terahertz radiation has proven difficult to exploit.

However, if such devices can be developed that can tap into the terahertz spectrum, we could see it make a big impact in non-invasive imaging in industry, medicine and security where they are less harmful than X-rays and because of the shorter wavelength and provide sharper images than those produced by microwaves.

Graphene has begun to show some real promise in terahertz devices for everything from wireless communications to improved quantum cascade lasers that can reverse their emission, offering a complete change to fiber optic telecommunications. 

Now researchers at the University of Geneva (UNIGE), working with the Federal Polytechnic School in Zurich (ETHZ) and two Spanish research teams, have developed a technique, based on the use of graphene, that can potentially control both the intensity and the polarization of terahertz light very quickly

The researchers believe that their research, which is described in the journal Nature Communications, could lead to the development of practical uses of terahertz waves to imaging and telecommunications. They key to their development was the fabrication of a graphene-based transistor adapted to terahertz waves.

Because the interaction between terahertz radiation and the electrons in graphene is very strong, the researchers believed that it should be possible to use graphene to manage terahertz waves. With this graphene-based transistor, the researchers believe this kind of control over a complete range of terahertz frequencies is now possible.

"By combining the electrical field, which enables us to control the number of electrons in graphene and thus allows more or less light to pass through, with the magnetic field, which bends the electronic orbits, we have been able to control not just the intensity of the terahertz waves, but also their polarization," said Jean-Marie Poumirol, a member of the UNIGE research team and the first author of the study, in a press release. "It is rare that purely electrical effects are used to control magnetic phenomena."

The researchers envision the graphene-based devices being used in communications and imaging.

"Using a film of graphene associated with terahertz waves, we should be potentially able to send fully-secured information at speeds of about 10 to 100 times faster than with Wi-Fi or radio waves, and do it securely over short distances," explained Poumirol.

 The initial imaging applications are thought to be in security. Alexey Kuzmenko, team leader of the research at UNIGE added: “Terahertz waves are stopped by metals and are sensitive to plastics and organic matter. This could lead to more effective means of detecting firearms, drugs and explosives carried by individuals, and could perhaps serve as a tool to strengthen airport safety."

Tags:  communications  fiber optics  imaging  security  terahertz  transitor  wireless 

Share |
PermalinkComments (0)
 

Graphene Interlayer Fixes the Schottky Diode

Posted By Dexter Johnson, IEEE Spectrum, Friday, February 10, 2017

Schottky diodes are the grand daddy of semiconductor devices. They are formed when a semiconductor material is combined with a metal and the junction between the two materials creates the Schottky diode. Despite being around since forever, it’s never been quite possible to make them into an ideal diode in which when a voltage is applied it acts as conductor and when the voltage is reversed it serves as a insulator.

Now researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have been able to produce the ideal version of the Schottky diode by inserting a graphene layer between the semiconductor and the metal, and in the process have eliminated 50 years of head scratching over this issue. 

In research described in the journal Nano Letters, the UNIST researchers discovered that graphene serves to prevent the intermixing of atoms that occurs when the semiconductor and metal are touching each other directly.

“The space between the carbon atoms that make up the graphene layer has a high quantum mechanical electron density and therefore no atoms can pass through it,” said Kibog Park, a professor at UNIST and co-author of the paper, in a press release. “Therefore, by inserting the graphene layer between metal and semiconductor, it is possible to overcome the inevitable atomic diffusion problem.”

While the research solved this problem, it also confirmed a prediction that it didn’t matter what kind of metal was used to form the Schottky junction; the performance does not change significantly.

The applications for Schottky diodes are pretty broad, but the main use is that of a rectifier, which converts alternating current (AC) to direct current (DC). But so many electronic devices use these diodes that this research is expected to resolve what has been a long-standing issue within the electronic industry.

Tags:  electronics  graphene interlayer  metal  rectifier  Schottky diodes  semiconductor 

Share |
PermalinkComments (0)
 

NanoXplore Brings Unique Perspective to Graphene Production

Posted By Dexter Johnson, IEEE Spectrum, Thursday, January 26, 2017

 

After Montreal-based NanoXplore launched in 2011, its initial business was contract research in the field of carbon-based technologies. But its identity as a contract R&D company changed in 2014 when it filed a series of patents focused on graphene production.

As the company further developed its technology since then, the main focus of the company has become providing graphene-enhanced polymers for plastics that have enhanced electrical, thermal and mechanical properties.

The company website suggests that these graphene-based polymers have a variety of applications, ranging from photovoltaics to supercapacitors

We wanted to get to know how a relatively new company that started out as an R&D contractor evolved into a graphene-enhanced polymer manufacturer and how they now see the downstream market for their product. To do that, we took the opportunity of NanoXplore becoming a corporate member of The Graphene Council to talk to the company’s chief operating officer, Paul Higgins, and here is that interview.

Q: NanoXplore started out as an R&D contractor in carbon-based technologies. How is it that the company was able to file a patent in graphene production patent just two years after being formed? Were you always doing research in this area, or did you make a concerted effort to find a place in the graphene market?

Working with other carbon-based materials, especially CNTs, it became evident that many commercialization challenges were due to the production processes. The processes had been developed in research environments and were not designed from the ground up with an industrial mindset. We focused from the beginning on low cost, high-yield processes, using existing capital equipment, and with no pre- and post-processing. For example, our graphene production process functionalizes the graphene in-situ, avoiding costly functionalization post-processing for most applications. We were also very cognizant of the need for sustainable, “green” processes; our patented process is water-based, uses no strong acids, and no organic solvents.

A key insight underpinning our patents is that high energy and strong chemical processes create many downstream problems in graphene production. High-energy processes are inefficient and create defected planar structures, resulting in graphene with poor electrical and thermal benefits, in turn requiring high, non-economic loadings of graphene in nanocomposites.  Strong chemical processes require complicated post-processing and recycling processes to be cost effective and require very tightly controlled production environments, adding costs.

Once we had established the frame of potential solutions based upon the above, developing our new technology platform was relatively straightforward.

Q: Were you looking to enter a particular niche of the graphene supply chain or did the process you came up with dictate somewhat the point in the supply chain that you now occupy?

Our process is high yield, large volume, low cost, and produces graphene powder with very high quality. This allows us to target mass industrial material markets such as polymers, markets requiring large volumes of material. And due to the quality of our graphene, we can provide significant benefit to industrial materials at low loadings and viable price points.

Of course, the graphene must be effectively mixed into the polymer matrix. To do this we have developed production processes for the manufacture of graphene-enhanced plastic masterbatches. These masterbatches, which we have been manufacturing and selling since early 2016, are the perfect form factor for the plastic industry. Plastic formers, such as injection and blow molders, and compounders are very comfortable with masterbatches and easily incorporate them into their existing processes.

Q: Do you see the company evolving to develop products further up the supply chain? For instance, it appears you’re involved in energy storage technologies enabled by graphene. Is this where you see your business moving or do you see this is just diversification of your portfolio?

NanoXplore is focusing our current commercial efforts on graphene-enhanced polymers. We see this as a large market, hungry for innovative materials, where our graphene has a strong competitive advantage.

We also have a patent on a unique graphene-graphite composite material that is useful for energy storage applications. This material was the impetus for our original research in the energy field. This initial research showed great promise and leads us into development of a range of materials for Si-graphene anodes and S-graphene cathodes.

From our current polymer efforts and the emerging energy storage materials, we see a sustainable growth model for the company. Our core research efforts develop graphene-based technologies for a target market, and then transition to product development. During the transition, we will develop technologies for the next target industry. And repeat. Graphene is so broadly applicable that we foresee being able to continue in this vein for some time.

Q: How does your company envision the landscape for the graphene market evolving over the next five years, i.e. are there particular markets that will be winners and losers, what applications are not being sufficiently targeted, etc.?

The graphene market has changed significantly over the last three years. Three years ago the challenge for end users was to obtain decent material, in volume, at a reasonable price. Today there are several producers, including NanoXplore, producing large volumes of good quality graphene. Prices per kg for high quality graphene have fallen during this period from $30,000 kg to $100 Kg and are set to fall to $30 kg over the next five years.

[NB: Above and subsequent comments pertain to high quality - low defect, functionalized few layer graphene and graphene nanoplatelets. Graphene from CVD is excluded as is reduced Graphene Oxide (rGO)].

The current challenge for the graphene industry is to incorporate graphene into real-world products and industrial processes. One of the major hurdles is that graphene is sold into a supply chain, with many players between the graphene producer and the final product. And each of these players has their own calculus of risk versus benefit. To be successful the graphene producer must demonstrate benefits to each player at every step along the supply chain, while meeting standards, helping to modify processes, overcoming regulatory hurdles and minimising supply chain disruptions. The successful companies will expand to cover several steps in the supply chain – for example graphene material, polymer compounds, plastic forming – and develop partnerships with other key supply chain players.

Over the next 3-5 years, one can imagine the commercial introduction of novel graphene enabled subsystems and systems. This category of products will include strong, light weight and highly functional nanocomposites for electric transportation vehicles, greatly improved energy systems (e.g., next generation batteries), high barrier packaging, smart textiles, and others. Solutions for highly regulated industries (e.g., medical, aerospace), some being demonstrated today, will start to exit their testing regimes and enter the marketplace.

Ultimately graphene will be part of building a sustainable future, playing a significant role in the replacement of costly, single function, or scarce materials with abundant, cheaper, and higher-performing ones. It will replace multiple and occasionally toxic additives with a single multi-functional material. It will reduce weight while increasing strength for a wide range of structural polymers and composites often leading to significant fuel savings in vehicles. It will extend the useful lifetime of paints, coatings and lubricants. And it will improve thermal management and energy storage in a wide range of applications, again improving efficiency while husbanding scarce resources.

NanoXplore is very well positioned to help customers participate in this emerging new world. With the combination of high quality graphene material, expertise in mixing graphene with a wide array of industrial materials, and a team of seasoned business leaders and material scientists with broad industrial experience, NanoXplore enables customers to achieve significant and affordable product improvements with very little added graphene.

Tags:  masterbatches  photovoltaics  polymers  supercapacitors 

Share |
PermalinkComments (0)
 

From the Lab to the Financial Markets: Applied Graphene Materials Leads the Way

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, January 25, 2017

 

 

Back in 2010, Karl Coleman, a professor at Durham University in the UK, spun out a company at first known as Durham Graphene Science and then later floated on the stock market (AIM) as Applied Graphene Materials (AGM). 

The word quickly spread about AGM’s approach to producing graphene. The company’s manufacturing techniques did not require either a graphite source or a metal catalyst, with the latter leading to highly pure graphene platelets with little oxygen content.

From the outset, AGM has always been considered to have a flexible position in the graphene supply chain, with their product being adaptable to the needs of their clients. The company's graphene has been proposed for applications ranging from an indium-tin oxide (ITO) replacement in flexible displays to electrode material in batteries and supercapacitors. With its first production order and commercial application announced last October, we should begin to see the company’s flexibility demonstrate itself in the coming year. 

AGM is one of the few publicly traded graphene companies, which gives it a fairly unique position to observe the developing graphene markets. As one of The Graphene Council’s newest corporate members, we had the opportunity to ask some questions of AGM’s CEO, Jon Mabbitt, to get their view of graphene’s commercial development.

Q: The development of Applied Graphene Materials from university research to an AIM-traded business is a story that many lab research groups working with graphene and other 2D materials would like to duplicate.  What were a few of the most important factors that contributed to the success of your company bridging that gap between the lab and the fab?

A: Universities provide a fantastic environment in which to be creative, but often ideas do not progress beyond a single experiment or perhaps being the topic of a research paper. In our case the close connection between the Inorganic Chemistry department at Durham University and the Technology Transfer office facilitated the opportunity for the manufacturing processes to be financially supported. Without this early stage investment the ideas would probably have gone no further, but with seed capital and self-belief the people involved at this stage were able to deliver proof-of-concept. Another significant step was that the inventor recognised they were not necessarily best placed to lead the company going forward and was comfortable enough to pass on the responsibility to an experienced growth management team.

Q: Your corporate literature describes your production of graphene as a “bottom-up” process. Is this a chemical vapor deposition process or some kind of chemical exfoliation process? And do you see your process being adapted in some way that it could be used to produce monolayer graphene for electronic or optoelectronic applications in larger capacities than they are currently?

We describe our process as “bottom up” because we synthesize our graphene and do not exfoliate it from graphite. However, this is not a CVD process because we do not require a substrate on which to deposit the vapor. It is a chemical decomposition of alcohol, which is then reassembled to create the graphene nanoplatelets.

Q: It would seem that your current business model is that of a producer of graphene dispersions that supplies different product manufacturers to further enable their products? Do you see your business model evolving over time where you move further up the supply chain and eventually you would be manufacturing the products that are sold rather than the dispersions?

Our strategy is very simple: make graphene and format it. We only want to produce graphene and supply it in a format that can be easily handled by our customers and easily incorporated into their products. It is our customers who will create end products. Clearly by this approach working extremely closely with our customers is mutually beneficial to enable the optimum results.

Q: In your own business lines, what applications are showing the most potential for growth, i.e. coatings, composites, functional fluids, etc.? And why do you think this is the case: The underlying markets did not have any solution to the issues that the graphene-enabled products offered, or the graphene-enabled product outperformed what was currently in the market?

One of the Achilles heels of start-up companies is that they try to do too much. We have identified specific areas where we know our graphene material delivers particular benefits and so for now we remain focused on those areas: coatings (barrier performance), composites (mechanical performance) and functional fluids (friction modification). All sectors are looking for improvements, normally performance enhancement or cost reductions. The particular attributes graphene brings is that you get a lot of performance for very little quantity added. The ultra-high surface area to weight ratio combined with the chemical composition and bonding regime of graphene makes it super interesting. However, not all graphene is produced equally and the method of manufacture dictates the resultant properties of the material. Also whilst graphene has several attributes they cannot all be delivered concurrently in certain applications.

Q: In your dealings with customers, what is typically their biggest reservation in adopting your graphene dispersions and how do you typically overcome these doubts?

To gain customer interest you must provide credible data to support your assertions. Industrial companies will not spend time on technology concepts that are unproven. Once we have grabbed their attention then we need to support the customer really closely – things will go wrong before they go right and so a dogged mentality is essential. You also need to demonstrate that your business will continue to exist and be able to supply the products repeatedly and consistently in the long term.

Q: What do you think the overall market for graphene needs in order to see wider development of graphene-enabled products, i.e. more defined industry standards, just more time in the market, manufacturing costs to go lower? If all of these and more, which is the most acute?

I don’t believe there is or will be a distinct market for graphene, moreover graphene can be adopted largely as an additive to enhance a range of materials across several existing market sectors. I don’t subscribe to the idea that standardization will enable acceptance. Graphene is, and will remain for many years to come, a specialty chemical and exist in many different forms. There are some issues where a common approach would be beneficial for all, such as regulatory controls and H&S. Everyone involved in graphene needs more application successes and to achieve this there needs to be a bolder commitment from producers and advisors to go and make it happen.

Tags:  graphene platelets  ITO  publicly traded  stock market  supercapacitors 

Share |
PermalinkComments (0)
 

Additive Manufacturing & 3D Printing with Graphene

Posted By Terrance Barkan, Friday, January 20, 2017

 

3d printing, also known as additive manufacturing (AM), represents significant potential for the use of graphene material as an additive to the fast growing range of printable materials. This is increasingly true as there is a clear shift towards producing functional parts for industrial end use, including aerospace and automotive applications. 

Despite being a relatively low volume market at the moment, AM has several useful properties than make it an attractive market to a graphene producer as well as to end users. The AM market has a strong appetite to test new materials and to identify innovative applications not just in the AM processes, but in the characteristics of the materials that are used. Rapid process and testing times for new products mean that there is also a low barrier to entry compared to supplying nano-enhanced materials in other manufacturing industries. 

Because traditional AM materials are often quite expensive on their own, adding a relatively expensive material like graphene has less of an impact on the final costs than it might in some other large scale commercial applications. 

One of the advantages of AM is the ability to make one-off or specialty parts with no loss in production speed. Parts are also essentially the same price regardless of whether you print a few or a few thousand pieces. 

Although there are a large number of different AM technologies, there are really just three formats of material, (powders, liquids and filaments) and there are three main classes of material (metals, plastics and ceramics). Graphene has the potential to add desirable characteristics across many of these technologies, formats and material classes. 

One of the most important materials in use with AM today is polymers. There is significant scope for graphene to gain traction and market share here as an additive, primarily due to the ease of processing graphene into polymers. Common thermoplastics used in sintering and extrusion AM techniques include  ABS, PLA, nylons (6 and 12), TPU, PET and HIPS. Thermosets such as epoxy and acrylics are also popular in UV cured AM applications. Despite the relatively difficult processing challenges for metals and ceramics, there is potential for graphene to also add value across those technologies.

Graphene has the ability to provide improvements to conventional AM materials and in some case, these material improvements are unique to graphene. In particular, graphene can have an impact on;


• Much lower solids content 
• Shift material into a printability window 
• Improve HDT and shrinkage 
• Mechanical reinforcement where certain macro additives can’t be used
• Significant multi-functionality (5+ uplifts with one additive) 

 

Essentially graphene is adding benefits to or improving on the performance of a given consumable as well as mitigating or reducing the negatives. Multifunctionality is also important; gaining multiple beneficial properties without resorting to using several additives that might be incompatible with each other and doing so with a low addition rate lowers the risk of adding negative performance into a polymer, such as lower processability or brittleness. 

3D Printing and AM is just another of the many areas where graphene is proving worthy of a much closer look by materials scientists, product designers, engineers and production specialist across a broad range of industries. 

 

Want to learn more? 

 

Join an in-depth Webinar on Graphene and 3D Printing

Tags:  3D Printing  Additive Manufacturing 

Share |
PermalinkComments (0)
 

Thermionic Energy Converters on the Rise Thanks to Graphene

Posted By Dexter Johnson, IEEE Spectrum, Tuesday, January 10, 2017