Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
Search all posts for:   

 

View all (871) posts »
 

LIGC announces $3M USD Series A funding from Hubei Forbon Technology Co. Ltd

Posted By Graphene Council, Thursday, September 17, 2020
Israeli startup LIGC announced a $3M USD Series A round from public listed Wuhan-based Hubei Forbon Technology Co. Ltd (300387.SZ). The funding will be used to scale and manufacture LIGC's Laser-Induced Graphene filters (LIG).

The technology was developed by Houston's Rice University in partnership with Ben-Gurion University (BGU) of the Negev in Israel and was licensed from BGN technologies, the technology transfer company of BGU. It utilizes graphene's conductivity to run an electric current through the filter.

"For a simplified analogy, one can see the graphene as an electric fence to the micron and submicron level with similar functionality as a mosquito zapper," said LIGC Co-founder & CEO Yehuda Borenstein. "When an airborne bacteria or virus touches the graphene surface, it's electrified and damaged, and only low voltages and currents that are safe for use are needed."

Since the LIGC filter uses active means to eliminate bacteria and viruses, lower density filtration media can be used, resulting in significantly less energy consumption. In addition, LIGC active filters require lower maintenance than other filters and are safe to the operator during maintenance and replacement.

Air filters are all around us in airplanes, ships, schools, offices, and homes. In some cases, like airplanes, they already have HEPA filters that remove viruses and bacteria from the air circulated but at high energy and maintenance costs.

While 2020 has underlined the importance of protecting against airborne viruses, the post-pandemic world will likely show us how important it is to do so without increasing energy costs past the point of affordability.

"There's still much to learn about COVID-19, but it's now established that airborne transmission is possible," said Borenstein. "In the absence of better filtration technology, the indoor spaces where we used to spend most of our 'normal' life--schools, stores, offices-- present a real risk."

Tags:  Ben-Gurion University  Graphene  graphene filters  Hubei Forbon Technology  LIGC Application  Rice University  Yehuda Borenstein 

Share |
Permalink | Comments (0)