Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Batteries  University of Manchester  nanomaterials  CVD  Graphene Flagship  First Graphene  graphene oxide  Healthcare  coatings  electronics  Li-ion batteries  energy storage  semiconductor  graphene production  Graphite  The Graphene Flagship  Applied Graphene Materials  carbon nanotubes  composites  Versarien  battery  Haydale  Andre Geim  nanoelectronics  optoelectronics  polymers  3D Printing 

Strategic Insight Paper Explores Graphene's Impact

Posted By Graphene Council, The Graphene Council, Monday, March 25, 2019
Updated: Thursday, March 21, 2019
The International Sign Association (ISA)  is marking its 75th anniversary by giving back to the sign, graphics and visual communications industry. A series of white papers will explore future technologies expected to impact the industry.

The first Strategic Insight paper, Nanomaterials: Giant Changes Coming from the Tiniest of Materials, was written by Dexter Johnson, senior science editor/analyst for the Graphene Council. It explores nanomaterials and their potential uses in protective applications, thin-film electronics (i.e. flexible displays and electronics), digital displays, pigments for inks and paper.

"ISA was founded in 1944 by visionaries who wanted to see how they could grow the industry and their businesses," said Lori Anderson, ISA president and CEO. "As we mark the 75th anniversary, it only seems fitting that we honor their legacy by looking forward as well. These Strategic Insight papers, written by leading thinkers from inside and outside our industry, will help companies explore the next iteration of the sign, graphics and visual communications industry in a way that honors our founders."

Tags:  Graphene  International Sign Association  nanomaterials  The Graphene Council 

Share |
PermalinkComments (0)
 

Micro and nano materials, including clothing for Olympic athletes

Posted By Graphene Council, The Graphene Council, Monday, March 25, 2019
Updated: Monday, March 25, 2019
A research team of materials engineers and performance scientists at Swansea University has been awarded £1.8 million to develop new products - in areas from the motor industry to packaging and sport - that make use of micro and nano materials based on specialist inks.

One application already being developed is specialist clothing that will be worn by elite British athletes in training and at the 2020 Olympic and Paralympic Games.

The researchers will be incorporating advanced materials such as graphene into flexible coatings which will be printed and embedded into bespoke garments to enhance the performance of elite athletes.

The purpose of the project is to serve as a pipeline for new ideas, testing to see which of them can work in practice and on a large scale, and then turning them into actual products.

The gap between initial concept and final product is known in manufacturing as the "valley of death" as so many good ideas simply fail to make it. The pipeline will help ensure more of them make it across the valley: off the drawing board and into production.

This project is unique in that it is driven by market requirements. As well as the wearable technology, identified by the English Institute of Sport (EIS), two other areas will be amongst the first to use the pipeline: SMART packaging, with the company Tectonic, and the car industry, with GTS Flexible Materials

The project is a collaboration between two teams in Swansea University's College of Engineering: the Welsh Centre for Printing and Coating (WCPC) led by Professor Tim Claypole and Professor David Gethin, and the Elite and Professional Sport (EPS) research group, namely Dr Neil Bezodis, Professor Liam Kilduff and Dr Camilla Knight.

The WCPC is pioneering ways of using printing with specialist inks as an advanced manufacturing process. Their expertise will be central to the project.

Professor Tim Claypole, Director of the Wales Centre for Printing and Coating, said:

"The WCPC expertise in ink formulation and printing is enabling the creation of a range of advanced products for a wide range of applications that utilise innovative materials".

Sport, which is one of the areas the project covers, has been a test bed for technology before. For example, heart rate monitors and exercise bikes have now become mainstream.

EPS project lead Dr Neil Bezodis underlined the importance of links with partners within the overall project:

"Collaborations between industrial partners which are driven by end users in elite sport are key to ensuring our research has a real impact".

Tags:  Camilla Knight  coatings  David Gethin  Graphene  Liam Kilduff  nanomaterials  Neil Bezodis  sporting goods  Swansea University  Tim Claypole  Welsh Centre for Printing and Coating 

Share |
PermalinkComments (0)
 

Talga Anode Achieves Outstanding Freezing Temperature Performance

Posted By Graphene Council, The Graphene Council, Saturday, March 23, 2019
Talga Resources , ispleased to announce outstanding low temperature test results from its engineered graphite anode product for lithium-ion batteries, Talnode™-C.

Development of Talnode-C is accelerating through rigorous commercial validation processes at multiple commercial partner facilities and independent battery institutes in Asia, USA and Europe. In new tests conducted at a leading Japanese battery institute, Li-ion batteries using Talnode-C were subjected to performance tests under a range of temperatures including freezing conditions. Highlights of the test results include:
• Retention of 100% capacity and 100% cycle efficiency at freezing temperature (0°C)
• Out-performance of market leading commercial anode products

In freezing conditions Li-ion batteries usually suffer lower capacity retention and cycling efficiency, causing shorter run time of devices such as laptop computers and mobile phones, or shorter driving range of electric vehicles. Cold temperatures can also cause deposits of lithium metal to form in the battery, causing internal short circuits that can lead to fire in the cell, making low temperature performance a critical technical deliverable for Li-ion batteries1.

Talga Managing Director, Mr Mark Thompson: “These results show Talnode-C has the potential to solve problems that have long challenged Li-ion batteries in cold weather applications, where conventional graphite anodes struggle or fail to perform. This is a further demonstration that Talga’s anode products made from our high grade graphite deposit in Sweden, using wholly owned process and refining technology, have exciting potential in the fast growing Li-ion battery market.”

Moving Forward
Market validation of the TalnodeTM product range, and in particular the flagship Li-ion anode product Talnode-C, continues as Talga works to incorporate the development of its new class of high-performance graphitic carbon anode products into its long-term business strategy.

Advanced testing and validation, including the surface treatment and coating of Talnode-C, progresses across multiple commercial partner facilities and independent battery institutes in Asia, USA and Europe. It is expected that Talnode-C, a fully engineered and formulated active anodeready product to be marketed directly towards Li-ion battery manufacturers, will form the
foundation of a near-term commercialisation opportunity for the Company’s larger scale development of the Vittangi graphite project in Sweden.

Low Temperature Technical Background
Li-ion batteries are widely used at room temperature because of their high specific energy and energy density, long cycle life, low self-discharge, and long shelf life2. When charging a Li-ion battery, the lithium ions inside the battery are soaked up (as in a sponge) by the porous negative electrode (anode), made of graphite.

Under temperatures approaching freezing (0°C) however, the lithium ions aren’t efficiently captured by the anode. Instead, many lithium ions are reduced to lithium metal and coat the surface of the anode, a process called lithium plating, resulting in less lithium available to carry the flow of electricity. Consequently, the battery’s capacity and cycle efficiency drops and this translates to poorer performance3.

In cooler countries of the northern hemisphere, it has been measured that the driving range of electric vehicles can be reduced by 41% in real world sub-zero conditions4. The most significant negative effect of low temperature on Li-ion batteries is the generation of lithium metal growths called dendrites, which can perforate the separator and cause a short circuit or fire in the lithium-ion cells. A highly visible example of this was in the 2013 grounding of Boeing 787 Dreamliner aircraft following a spate of electrical system failures, including fires. Investigation found that cold winter overnight temperatures fostered lithium plating within the battery cells and caused the short circuits5.

Tags:  Graphene  Li-ion batteries  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 

Versarien PLC - USA Update

Posted By Graphene Council, The Graphene Council, Saturday, March 23, 2019
Versarien plc, is pleased to provide an update on the Company's activities in the United States of America. Versarien has recently established a new US corporate entity, Versarien Graphene Inc, to facilitate the Company's graphene and other 2D materials activities in the USA.  The Company is additionally in the process of establishing a new office, laboratory facility and applications centre in Houston, Texas that will act as a hub for the Company's activities in North America.

Patrick Abbott has been appointed as Versarien's Vice President North American Operations to oversee these activities and he will be based at the Company's Houston facility once established.  Patrick is an experienced speciality materials professional with over 20 years' experience in the sector.  

He is a former US Marine Corps Officer who spent over 16 years in a variety of global business development and marketing roles at BASF. In 2015 and 2016, Patrick was part of the team transitioning specific product lines to Huntsman Corporation. Subsequently he established Global Marketing Empire Solutions, a disruptive technology consulting company and joined XG Sciences, a company focussed on graphene nano technology, as their global sales manager.  At XG Sciences he was tasked with assisting the executive team in transitioning the company from an academic company to full commercialisation.

The establishment of this US presence follows on from collaboration with partners in the region.  Further North American potential collaboration partners and customers have been identified, both through inbound enquires and proactive approaches, and it is intended that the Houston facility and additional resource will enable these to be more efficiently progressed.

The Company is pleased to be participating in the UK Government organised "UK Technology and Capability Showcase" being held at Collins Aerospace in Charlotte, North Carolina, on 25 March 2019 where the Company will be presenting its 2D materials technology to Collins Aerospace representatives.

Neill Ricketts, CEO of Versarien, commented: "We are very pleased to be moving to the next stage of our development in the US with the establishment of Versarien Graphene Inc and a dedicated facility in Houston. 

"We are already pursuing a number of substantial opportunities in the US and I expect our level of activity to significantly increase in the coming months, particularly given the high number of enquires we have had for the supply of our graphene and other 2D materials from leading US companies."

"I am also particularly pleased we have secured the services of Patrick Abbott and I would like to formally welcome him to the Versarien team.  His skills and experience will be invaluable as we look to build more relationships and commercialise graphene enhanced products with US companies."

"Coupled with the recent progress we have made in China and elsewhere we remain confident that we can make further rapid progress this year.  I look forward to providing further updates on our US and other activities in due course."

Tags:  2D materials  Graphene  Neill Ricketts  Patrick Abbott  Versarien 

Share |
PermalinkComments (0)
 

Gold and graphene now used in biosensors to detect diseases

Posted By Graphene Council, The Graphene Council, Tuesday, March 19, 2019
Updated: Tuesday, March 19, 2019

Graphene and gold are now being used in ultrasensitive biosensors to detect diseases at the molecular level with near perfect efficiency.


In a paper published in the journal Nature Nanotechnology, scientists with the University of Minnesota explain how they developed ultrasensitive biosensors capable of probing protein structures and, therefore, able to detect disorders related to protein misfolding.

Such disorders range from Alzheimer's disease in humans to chronic wasting disease and mad cow disease in animals.

"In order to detect and treat many diseases we need to detect protein molecules at very small amounts and understand their structure," said Sang-Hyun Oh, lead researcher on the study, in a media statement. "Currently, there are many technical challenges with that process. We hope that our device using graphene and a unique manufacturing process will provide the fundamental research that can help overcome those challenges."

The gold+graphene-infused biosensors can detect the imbalance that causes behind Alzheimer's disease, chronic wasting disease and mad cow disease.

Oh explained that graphene, a high-quality form of graphite that 'evolves' into a material made of a single layer of carbon atoms, has already been used in biosensors. The problem has been that its remarkable single atom thickness does not interact efficiently with light when shined through it. Light absorption and conversion to local electric fields are essential for detecting small amounts of molecules when diagnosing diseases.

According to the scientist, previous research utilizing similar graphene nanostructures has only demonstrated a light absorption rate of less than 10%.

In their new study, however, the UMN researchers combined graphene with nano-sized metal ribbons of gold. Using sticky tape and a high-tech nanofabrication technique called “template stripping,” they were able to create an ultra-flat base layer surface for the graphene.

They then used the energy of light to generate a sloshing motion of electrons or plasmons in the graphene. "By shining light on the single-atom-thick graphene layer device, they were able to create a plasmon wave with unprecedented efficiency at a near-perfect 94 percent light absorption into 'tidal waves' of electric field. When they inserted protein molecules between the graphene and metal ribbons, they were able to harness enough energy to view single layers of protein molecules," the university's press release reads.

According to Oh, he and his team were surprised by the rate of light absorption, which matched almost perfectly their computer simulations.

The scientists are hopeful that this technique will greatly improve different devices used to detect disorders related to protein misfolding.

Tags:  Biosensors  Graphene  Sang-Hyun Oh  University of Minnesota 

Share |
PermalinkComments (0)
 

A quantum magnet with a topological twist

Posted By Graphene Council, The Graphene Council, Tuesday, March 19, 2019
Updated: Tuesday, March 19, 2019
Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons in these materials have exotic, so-called topological behaviors and others behave somewhat like graphene, another material prized for its potential for new types of electronics.

Now, an international team led by researchers at Princeton University has observed that some of the electrons in these magnets behave collectively, like an almost infinitely massive electron that is strangely magnetic, rather than like individual particles. The study was published in the journal Nature Physics this week.

The team also showed that placing the kagome magnet in a high magnetic field causes the direction of magnetism to reverse. This "negative magnetism" is akin to having a compass that points south instead of north, or a refrigerator magnet that suddenly refuses to stick.

"We have been searching for super-massive 'flat-band' electrons that can still conduct electricity for a long time, and finally we have found them," said M. Zahid Hasan, the Eugene Higgins Professor of Physics at Princeton University, who led the team. "In this system, we also found that due to an internal quantum phase effect, some electrons line up opposite to the magnetic field, producing negative magnetism."

The team explored how atoms arranged in a kagome pattern in a crystal give rise to strange electronic properties that can have real-world benefits, such as superconductivity, which allows electricity to flow without loss as heat, or magnetism that can be controlled at the quantum level for use in future electronics.

The researchers used state-of-the-art scanning tunneling microscopy and spectroscopy (STM/S) to look at the behavior of electrons in a kagome-patterned crystal made from cobalt and tin, sandwiched between two layers of sulfur atoms, which are further sandwiched between two layers of tin.

In the kagome layer, the cobalt atoms form triangles around a hexagon with a tin atom in the center. This geometry forces the electrons into some uncomfortable positions -- leading this type of material to be called a "frustrated magnet."

To explore the electron behavior in this structure, the researchers nicked the top layers to reveal the kagome layer beneath.

They then used the STM/S technique to detect each electron's energy profile, or band structure. The band structure describes the range of energies an electron can have within a crystal, and explains, for example, why some materials conduct electricity and others are insulators. The researchers found that some of electrons in the kagome layer have a band structure that, rather than being curved as in most materials, is flat.

A flat band structure indicates that the electrons have an effective mass that is so large as to be almost infinite. In such a state, the particles act collectively rather than as individual particles.

Theories have long predicted that the kagome pattern would create a flat band structure, but this study is the first experimental detection of a flat band electron in such a system.

One of the general predictions that follows is that a material with a flat band may exhibit negative magnetism.

Indeed, in the current study, when the researchers applied a strong magnetic field, some of the kagome magnet's electrons pointed in the opposite direction.

"Whether the field was applied up or down, the electrons' energy flipped in the same direction, that was the first thing that was strange in terms of the experiments," said Songtian Sonia Zhang, a graduate student in physics and one of three co-first-authors on the paper.

"That puzzled us for about three months," said Jia-Xin Yin, a postdoctoral research associate and another co-first author on the study. "We were searching for the reason, and with our collaborators we realized that this was the first experimental evidence that this flat band peak in the kagome lattice has a negative magnetic moment."

The researchers found that the negative magnetism arises due to the relationship between the kagome flat band, a quantum phenomenon called spin-orbit coupling, magnetism and a quantum factor called the Berry curvature field. Spin-orbit coupling refers to a situation where an electron's spin, which itself is a quantum property of electrons, becomes linked to the electron's orbital rotation. The combination of spin-orbital coupling and the magnetic nature of the material leads all the electrons to behave in lock step, like a giant single particle.

Another intriguing behavior that arises from the tightly coupled spin-orbit interactions is the emergence of topological behaviors. The subject of the 2016 Nobel Prize in Physics, topological materials can have electrons that flow without resistance on their surfaces and are an active area of research. The cobalt-tin-sulfur material is an example of a topological system.

Two-dimensional patterned lattices can have other desirable types of electron conductance. For example, graphene is a pattern of carbon atoms that has generated considerable interest for its electronic applications over the past two decades. The kagome lattice's band structure gives rise to electrons that behave similarly to those in graphene.

Tags:  Graphene  M. Zahid Hasan  Princeton University  Songtian Sonia Zhang 

Share |
PermalinkComments (0)
 

Graphene Nanomaterials Unlocking New Possibilities

Posted By Terrance Barkan, Friday, March 8, 2019

Since the isolation of graphene in 2004 ( a single plane of sp2 carbon bonded atoms in a hexagonal honeycomb lattice), there has been a significant amount of research and application development work in academic and industrial organizations world-wide. 

Today, graphene is being produced and used in commercial quantities in a wide range of application areas, from  energy storage to construction materials. In fact, more than 40 discreet industries and applications are set to be disrupted by the extraordinary properties of a range of graphene materials.

Although the original definition of graphene is carbon as a single layer of atoms, commercial forms of graphene include; CVD Monolayer, Graphene Nano-platelets (GNPs), Graphene Oxide and various forms of functionalized graphene depending on the the intended application.

 

There are more than 200 companies world-wide that claim to produce graphene materials with new companies entering the sector every day.

The Graphene Council was founded in 2013 to represent the graphene community, including researchers, producers, application developers and end users. Today our community includes more than 20,000 material scientists and R&D professionals world-wide. 

We are actively working to support and advance the commercial adoption of graphene though the development of standards as members of the ISO/ANSI/IEC standards working groups as well as our quality control initiative,  the Verified Graphene Producers program which includes in-person inspections and testing of material at leading laboratories, like the National Physical Laboratory (NPL) in the UK,

The Graphene Council is also a founding Affiliate Member of the Graphene Engineering and Innovation Center (GEIC) at the University of Manchester. The GEIC allows for the rapid prototyping and testing of graphene enhanced products through the use of onsite industrial grade equipment and material characterization tools. 

If you are interested in learning how graphene can unlock new performance gains for your products or if you have new application ideas, contact us. 

Our global team of experts can help you identify the right partners and materials for your objectives. Contact us for more information. 

 

Graphene was first isolated at the 

University of Manchester in 2004 by 

Dr. Andre Geim and Dr. Konstantin Novoselov 

for which they received the 

Nobel Prize in Physics in 2010.

 

Tags:  Andre Geim  graphene  Konstantin Novoselov  Nobel  the graphene council  The Graphene Flagship 

Share |
PermalinkComments (0)
 

Directed evolution builds nanoparticles

Posted By Graphene Council, The Graphene Council, Thursday, March 7, 2019
Updated: Friday, March 1, 2019

The 2018 Nobel Prize in Chemistry went to three scientists who developed the method that forever changed protein engineering: directed evolution. Mimicking natural evolution, directed evolution guides the synthesis of proteins with improved or new functions.

First, the original protein is mutated to create a collection of mutant protein variants. The protein variants that show improved or more desirable functions are selected. These selected proteins are then once more mutated to create another collection of protein variants for another round of selection. This cycle is repeated until a final, mutated protein is evolved with optimized performance compared to the original protein.

Now, scientists from the lab of Ardemis Boghossian at EPFL, have been able to use directed evolution to build not proteins, but synthetic nanoparticles (Chemical Communications, "Directed evolution of the optoelectronic properties of synthetic nanomaterials").

These nanoparticles are used as optical biosensors – tiny devices that use light to detect biological molecules in air, water, or blood. Optical biosensors are widely used in biological research, drug development, and medical diagnostics, such as real-time monitoring of insulin and glucose in diabetics.

“The beauty of directed evolution is that we can engineer a protein without even knowing how its structure is related to its function,” says Boghossian. “And we don't even have this information for the vast, vast majority of proteins.”

Her group used directed evolution to modify the optoelectronic properties of DNA-wrapped single-walled carbon nanotubes (or, DNA-SWCNTs, as they are abbreviated), which are nano-sized tubes of carbon atoms that resemble rolled up sheets of graphene covered by DNA. When they detect their target, the DNA-SWCNTs emit an optical signal that can penetrate through complex biological fluids, like blood or urine.

Using a directed evolution approach, Boghossian’s team was able to engineer new DNA-SWCNTs with optical signals that are increased by up to 56% – and they did it over only two evolution cycles.

“The majority of researchers in this field just screen large libraries of different materials in hopes of finding one with the properties they are looking for,” says Boghossian. “In optical nanosensors, we try to improve properties like selectivity, brightness, and sensitivity. By applying directed evolution, we provide researchers with a guided approach to engineering these nanosensors.”

The study shows that what is essentially a bioengineering technique can be used to more rationally tune the optoelectronic properties of certain nanomaterials.

Boghossian explains: “Fields like materials science and physics are mostly preoccupied with defining material structure-function relationships, making materials that lack this information difficult to engineer. But this is a problem that nature solved billions of years ago – and, in recent decades, biologists have tackled it as well. I think our study shows that as materials scientists and physicists, we can still learn a few pragmatic lessons from biologists.”

Tags:  Ardemis Boghossian  biosensors  DNA  EPFL  Graphene  nanomaterials  optoelectronics 

Share |
PermalinkComments (0)
 

Step right up for bigger 2D sheets

Posted By Graphene Council, The Graphene Council, Thursday, March 7, 2019
Rice University researchers determined complementarity between growing hexagonal boron nitride crystals and a stepped substrate mimics the complementarity found in strands of DNA. The Rice theory supports experiments that have produced large, oriented wafers.

Very small steps make a big difference to researchers who want to create large wafers of two-dimensional material. Atom-sized steps in a substrate provide the means for 2D crystals growing in a chemical vapor furnace to come together in perfect rank. Scientists have recently observed this phenomenon, and now a Rice University group has an idea why it works.

Rice materials theorist Boris Yakobson and researcher Ksenia Bets led the construction of simulations that show atom-sized steps on a growth surface, or substrate, have the remarkable ability to keep monolayer crystal islands in alignment as they grow. If the conditions are right, the islands join into a larger crystal without the grain boundaries so characteristic of 2D materials like graphene grown via chemical vapor deposition (CVD). That preserves their electronic perfection and characteristics, which differ depending on the material.

Atom-sized steps in a substrate provide the means for 2D crystals growing in a chemical vapor furnace to come together in perfect rank. Scientists have recently observed this phenomenon, and now a Rice University group has an idea why it works.

Rice materials theorist Boris Yakobson and researcher Ksenia Bets led the construction of simulations that show atom-sized steps on a growth surface, or substrate, have the remarkable ability to keep monolayer crystal islands in alignment as they grow.

If the conditions are right, the islands join into a larger crystal without the grain boundaries so characteristic of 2D materials like graphene grown via chemical vapor deposition (CVD). That preserves their electronic perfection and characteristics, which differ depending on the material.

The Rice theory appears in the American Chemical Society journal Nano Letters.The investigation focused on hexagonal boron nitride (h-BN), aka white graphene, a crystal often grown via CVD. Crystals nucleate at various places on a perfectly flat substrate material and not necessarily in alignment with each other.

However, recent experiments have demonstrated that growth on vicinal substrates -- surfaces that appear flat but actually have sparse, atomically small steps -- can align the crystals and help them merge into a single, uniform structure, as reported on arXiv. A co-author of that report and leader of the Korean team, Feng Ding, is an alumnus of the Yakobson lab and a current adjunct professor at Rice.

But the experimentalists do not show how it works as, Yakobson said, the steps are known to meander and be somewhat misaligned.

"I like to compare the mechanism to a 'digital filter,' here offered by the discrete nature of atomic lattices," he said. "The analog curve that, with its slopes, describes a meandering step is 'sampled and digitized' by the very grid of constituent atomic rows, breaking the curve into straight 1D-terrace segments. The slope doesn't help, but it doesn't hurt. Surprisingly, the match can be good; like a well-designed house on a hill, it stands straight.

"The theory is simple, though it took a lot of hard work to calculate and confirm the complementarity matching between the metal template and the h-BN, almost like for A-G-T-C pairs in strands of DNA," Yakobson said.

It was unclear why the crystals merged into one so well until simulations by Bets, with the help of co-author and Rice graduate student Nitant Gupta, showed how h-BN "islands" remain aligned while nucleating along visibly curved steps.

"A vicinal surface has steps that are slightly misaligned within the flat area," Bets said. "It has large terraces, but on occasion there will be one-atom-high steps. The trick by the experimentalists was to align these vicinal steps in one direction."

In chemical vapor deposition, a hot gas of the atoms that will form the material are flowed into the chamber, where they settle on the substrate and nucleate crystals. h-BN atoms on a vicinal surface prefer to settle in the crook of the steps.

"They have this nice corner where the atoms will have more neighbors, which makes them happier," Bets said. "They try to align to the steps and grow from there.

"But from a physics point of view, it's impossible to have a perfect, atomically flat step," she said. "Sooner or later, there will be small indentations, or kinks. We found that at the atomic scale, these kinks in the steps don't prevent h-BN from aligning if their dimensions are complementary to the h-BN structure. In fact, they help to ensure co-orientation of the islands."

Because the steps the Rice lab modeled are 1.27 angstroms deep (an angstrom is one-billionth of a meter), the growing crystals have little trouble surmounting the boundary. "Those steps are smaller than the bond distance between the atoms," Bets said. "If they were larger, like two angstroms or higher, it would be more of a natural barrier, so the parameters have to be adjusted carefully."

Two growing islands that approach each other zip together seamlessly, according to the simulations. Similarly, cracks that appear along steps easily heal because the bonds between the atoms are strong enough to overcome the small distance.

Any path toward large-scale growth of 2D materials is worth pursuing for an army of applications, according to the researchers. 2D materials like conductive graphene, insulating h-BN and semiconducting transition metal dichalcogenides are all the focus of intense scrutiny by researchers around the world. The Rice researchers hope their theoretical models will point the way toward large crystals of many kinds.

The U.S. Department of Energy (DOE) supported the research. Computer resources were provided by the National Energy Research Scientific Computing Center, supported by the DOE Office of Science, and the National Science Foundation-supported DAVinCI cluster at Rice, administered by the Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology.

Tags:  Boris Yakobson  CVD  Graphene  Ksenia Bets  Rice University  U.S. Department of Energy (DOE) 

Share |
PermalinkComments (0)
 

First Graphene Presents at Graphene Automotive 2019 in Detroit

Posted By Graphene Council, The Graphene Council, Thursday, March 7, 2019
First Graphene's  Chief Technology Officer, Dr Andy Goodwin made a presentation at the Graphene Automotive 2019 conference and exhibition in Detroit on 4th and 5th March 2019. Andy was also invited to chair Day 1 of the conference. 

First Graphene provided an update on the measures that have been implemented to ensure the batch to batch quality of PureGRAPH™ products manufactured at Henderson, Western Australia. The Company also presented the latest information on the fundamental properties of PureGRAPH™ products underlining these are righty called graphene materials and also contained an update of progress in key applications. 

The new fundamental data indicates PureGRAPH™ is a low-defect, high aspect ratio graphene product with low metal and silicon contaminations levels. PureGRAPH™ has been shown by microscopy to contain high levels of Few Layer Graphene platelets. Raman analysis indicates the average platelet thickness is < 10 layers. 

One of the impediments to a more rapid commercialisation of graphene has been the inconsistency of quality material available for purchase. While many organisations state they can produce graphene, buyers have had issues with quality. Recognising this issue, FGR has gone to considerable lengths to ensure a high-quality product fit for delivery to industry.

"We continue to implement testing and monitoring tools that ensure the quality of PureGRAPH™ products for our customers” said Craig McGuckin, Managing Director First Graphene Ltd. “we will also continue to publish the more fundamental information on our products as this information becomes available from our ongoing collaborations with leading universities”. 

Tags:  Andy Goodwin  Craig McGuckin  First Graphene  Graphene  graphene platelets 

Share |
PermalinkComments (0)
 
Page 16 of 29
 |<   <<   <  11  |  12  |  13  |  14  |  15  |  16  |  17  |  18  |  19  |  20  |  21  >   >>   >|