Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

LIGC announces $3M USD Series A funding from Hubei Forbon Technology Co. Ltd

Posted By Graphene Council, Thursday, September 17, 2020
Israeli startup LIGC announced a $3M USD Series A round from public listed Wuhan-based Hubei Forbon Technology Co. Ltd (300387.SZ). The funding will be used to scale and manufacture LIGC's Laser-Induced Graphene filters (LIG).

The technology was developed by Houston's Rice University in partnership with Ben-Gurion University (BGU) of the Negev in Israel and was licensed from BGN technologies, the technology transfer company of BGU. It utilizes graphene's conductivity to run an electric current through the filter.

"For a simplified analogy, one can see the graphene as an electric fence to the micron and submicron level with similar functionality as a mosquito zapper," said LIGC Co-founder & CEO Yehuda Borenstein. "When an airborne bacteria or virus touches the graphene surface, it's electrified and damaged, and only low voltages and currents that are safe for use are needed."

Since the LIGC filter uses active means to eliminate bacteria and viruses, lower density filtration media can be used, resulting in significantly less energy consumption. In addition, LIGC active filters require lower maintenance than other filters and are safe to the operator during maintenance and replacement.

Air filters are all around us in airplanes, ships, schools, offices, and homes. In some cases, like airplanes, they already have HEPA filters that remove viruses and bacteria from the air circulated but at high energy and maintenance costs.

While 2020 has underlined the importance of protecting against airborne viruses, the post-pandemic world will likely show us how important it is to do so without increasing energy costs past the point of affordability.

"There's still much to learn about COVID-19, but it's now established that airborne transmission is possible," said Borenstein. "In the absence of better filtration technology, the indoor spaces where we used to spend most of our 'normal' life--schools, stores, offices-- present a real risk."

Tags:  Ben-Gurion University  Graphene  graphene filters  Hubei Forbon Technology  LIGC Application  Rice University  Yehuda Borenstein 

Share |
PermalinkComments (0)
 

Energy harvesting goes organic, gets more flexible

Posted By Graphene Council, Thursday, September 17, 2020
Nanogenerators capable of converting mechanical energy into electricity are typically made from metal oxides and lead-based perovskites. But these inorganic materials aren't biocompatible, so the race is on to create natural biocompatible piezoelectric materials for energy harvesting, electronic sensing, and stimulating nerves and muscles.

University College Dublin and University of Texas at Dallas researchers decided to explore peptide-based nanotubes, because they would be an appealing option for use within electronic devices and for energy harvesting applications.

In the Journal of Applied Physics, from AIP Publishing, the group reports using a combination of ultraviolet and ozone exposure to generate a wettability difference and an applied field to create horizontally aligned polarization of nanotubes on flexible substrates with interlocking electrodes.

"The piezoelectric properties of peptide-based materials make them particularly attractive for energy harvesting, because pressing or bending them generates an electric charge," said Sawsan Almohammed, lead author and a postdoctoral researcher at University College Dublin.

There's also an increased demand for organic materials to replace inorganic materials, which tend to be toxic and difficult to make.

"Peptide-based materials are organic, easy to make, and have strong chemical and physical stability," she said.

In the group's approach, the physical alignment of nanotubes is achieved by patterning a wettability difference onto the surface of a flexible substrate. This creates a chemical force that pushes the peptide nanotube solution from the hydrophobic region, which repels water, with a high contact angle to the hydrophilic region, which attracts water, with a low contact angle.

Not only did the researchers improve the alignment of the tubes, which is essential for energy harvesting applications, but they also improved the conductivity of the tubes by making composite structures with graphene oxide.

"It's well known that when two materials with different work functions come into contact with each other, an electric charge flows from low to high work function," Almohammed said. "The main novelty of our work is that controlling the horizontal alignment of the nanotubes by electrical field and wettability-assisted self-assembly improved both the current and voltage output, and further enhancement was achieved by incorporating graphene oxide."

The group's work will enable the use of organic materials, especially peptide-based ones, more widely within electronic devices, sensors, and energy harvesting applications, because two key limitations of peptide nanotubes -- alignment and conductivity -- have been improved.

"We're also exploring how charge transfer processes from bending and electric field applications can enhance Raman spectroscopy-based detection of molecules," Almohammed said. "We hope these two efforts can be combined to create a self-energized biosensor with a wide range of applications, including biological and environmental monitoring, high-contrast imaging, and high-efficiency light-emitting diodes."

Tags:  Energy  Graphene  graphene oxide  LED  Sawsan Almohammed  University College Dublin  University of Texas 

Share |
PermalinkComments (0)
 

Northwestern Engineering Names Winners of 2020 Cole-Higgins Awards

Posted By Graphene Council, Thursday, September 17, 2020
Three members of the Northwestern Engineering community have received the school’s annual awards for outstanding teaching and advising. 

Jonathan Emery, assistant professor of instruction in materials science and engineering, and Muzhou Wang, assistant professor of chemical and biological engineering, received the 2020 Cole-Higgins Awards for Excellence in Teaching. Russell Joseph, associate professor of electrical and computer engineering and computer science, earned the Cole-Higgins Award for Excellence in Advising. 

Emery’s research interests include atomic layer deposition, oxides, and graphene. Honored for “creative deployment of diverse resources to engage students and promote their learning,” Emery was cited for his efforts to make classes engaging and his use of electronic materials to enhance education during the spring term. 

“He cares very much about his students and is always trying to make resources available for everyone,” one student nominator said. “In both the structure of the class and how he delivered the content, it was clear how much he cares that all of his students are learning and doing well in the class.” 

Wang was lauded for “clear and meticulous presentation of rigorous content, prioritizing student understanding.” 

“He teaches heat transfer, a difficult course with complicated math, so clearly that I always trust the topics will make perfect sense by the end of class,” one nominator said. “He clearly has a lot of knowledge on the subject, and has an engaging, thoughtful style of teaching. He explains concepts so thoroughly, making students feel they have an understanding of the material at a depth that most other classes cannot attain.” 

Honored for “forging caring relationships with students focused on their needs and success,” Joseph’s work focuses on computer architecture, microprocessor design for reliability and variability tolerance, and power-aware computing. 

“Everybody loves Russ,” one student said. “He is a kind person who always tries to connect with his students.” 

“Russ Joseph is absolutely great!” another student nominator wrote. “He’s super accommodating, looks out for his students, and is entirely focused on their success.”

Tags:  Graphene  Jonathan Emery  Muzhou Wang  Northwestern Engineering  Russell Joseph 

Share |
PermalinkComments (0)
 

Physicists 'trick' photons into behaving like electrons using a 'synthetic' magnetic field

Posted By Graphene Council, Thursday, September 17, 2020
Scientists have discovered an elegant way of manipulating light using a "synthetic" Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

A team of theoretical physicists from the University of Exeter has pioneered a new technique to create tuneable artificial magnetic fields, which enable photons to mimic the dynamics of charged particles in real magnetic fields.

The team believe the new research, published in leading journal Nature Photonics, could have important implications for future photonic devices as it provides a novel way of manipulating light below the diffraction limit.

When charged particles, like electrons, pass through a magnetic field they feel a Lorentz force due to their electric charge, which curves their trajectory around the magnetic field lines.

This Lorentz force is responsible for many fascinating phenomena, ranging from the beautiful Northern Lights, to the famous quantum-Hall effect whose discovery was awarded the Nobel Prize.

However, because photons do not carry an electric charge, they cannot be straightforwardly controlled using real magnetic fields since they do not experience a Lorentz force; a severe limitation that is dictated by the fundamental laws of physics.

The research team have shown that it is possible to create artificial magnetic fields for light by distorting honeycomb metasurfaces -- ultra-thin 2D surfaces that are engineered to have structure on a scale much smaller than the wavelength of light.

The Exeter team were inspired by a remarkable discovery ten years ago, where it was shown that electrons propagating through a strained graphene membrane behave as if they were subjected to a large magnetic field.

The major drawback with this strain engineering approach is that to tune the artificial magnetic field one is required to modify the strain pattern with precision, which is extremely challenging, if not impossible, to do with photonic structures.

The Exeter physicists have proposed an elegant solution to overcome this fundamental lack of tunability.

Charlie-Ray Mann, the lead scientist and author of the study, explains: "These metasurfaces, support hybrid light-matter excitations, called polaritons, which are trapped on the metasurface.

"They are then deflected by the distortions in the metasurface in a similar way to how magnetic fields deflect charged particles.

"By exploiting the hybrid nature of the polaritons, we show that you can tune the artificial magnetic field by modifying the real electromagnetic environment surrounding the metasurface."

For the study, the researchers embedded the metasurface between two mirrors -- known as a photonic cavity -- and show that one can tune the artificial magnetic field by changing only the width of the photonic cavity, thereby removing the need to modify the distortion in the metasurface.

Charlie added: "We have even demonstrated that you can switch off the artificial magnetic field entirely at a critical cavity width, without having to remove the distortion in the metasurface, something that is impossible to do in graphene or any system that emulates graphene.

"Using this mechanism you can bend the trajectory of the polaritons using a tunable Lorentz-like force and also observe Landau quantization of the polariton cyclotron orbits, in direct analogy with what happens to charged particles in real magnetic fields.

"Moreover, we have shown that you can drastically reconfigure the polariton Landau level spectrum by simply changing the cavity width."

Dr Eros Mariani, the lead supervisor of the study, said: "Being able to emulate phenomena with photons that are usually thought to be exclusive to charged particles is fascinating from a fundamental point of view, but it could also have important implications for photonics applications.

"We're excited to see where this discovery leads, as it poses many intriguing questions which can be explored in many different experimental platforms across the electromagnetic spectrum."

Tags:  2D materials  Charlie-Ray Mann  Eros Mariani  Graphene  photonics  University of Exeter 

Share |
PermalinkComments (0)
 

E-Beam atomic-scale 3D 'sculpting' could enable new quantum nanodevices

Posted By Graphene Council, Thursday, September 17, 2020

By varying the energy and dose of tightly-focused electron beams, researchers have demonstrated the ability to both etch away and deposit high-resolution nanoscale patterns on two-dimensional layers of graphene oxide. The 3D additive/subtractive “sculpting” can be done without changing the chemistry of the electron beam deposition chamber, providing the foundation for building a new generation of nanoscale structures.

Based on focused electron beam-induced processing (FEBID) techniques, the work could allow production of 2D/3D complex nanostructures and functional nanodevices useful in quantum communications, sensing, and other applications. For oxygen-containing materials such as graphene oxide, etching can be done without introducing outside materials, using oxygen from the substrate.

“By timing and tuning the energy of the electron beam, we can activate interaction of the beam with oxygen in the graphene oxide to do etching, or interaction with hydrocarbons on the surface to create carbon deposition,” said Andrei Fedorov, professor and Rae S. and Frank H. Neely Chair in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “With atomic-scale control, we can produce complicated patterns using direct write-remove processes. Quantum systems require precise control on an atomic scale, and this could enable a host of potential applications.”

The technique was described in the journal ACS Applied Materials & Interfaces ("High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write"). The work was supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences. Co-authors included researchers from Pusan National University in South Korea.

Creation of nanoscale structures is traditionally done using a multistep process of photoresist coating and patterning by photo- or electron beam lithography, followed by bulk dry/wet etching or deposition. Use of this process limits the range of functionalities and structural topologies that can be achieved, increases the complexity and cost, and risks contamination from the multiple chemical steps, creating barriers to fabrication of new types of devices from sensitive 2D materials.

FEBIP enables a material chemistry/site-specific, high-resolution multimode atomic scale processing and provides unprecedented opportunities for “direct-write,” single-step surface patterning of 2D nanomaterials with an in-situ imaging capability. It allows for realizing a rapid multiscale/multimode “top-down and bottom-up” approach, ranging from an atomic scale manipulation to a large-area surface modification on nano- and microscales.

“By tuning the time and the energy of the electrons, you can either remove material or add material,” Fedorov said. “We did not expect that upon electron exposure of graphene oxide that we would start etching patterns.”

With graphene oxide, the electron beam introduces atomic scale perturbations into the 2D-arranged carbon atoms and uses embedded oxygen as an etchant to remove carbon atoms in precise patterns without introduction of a material into the reaction chamber. Fedorov said any oxygen-containing material might produce the same effect. “It’s like the graphene oxide carries its own etchant,” he said. “All we need to activate it is to ‘seed’ the reaction with electrons of appropriate energy.”

For adding carbon, keeping the electron beam focused on the same spot for a longer time generates an excess of lower-energy electrons by interactions of the beam with the substrate to decompose the hydrocarbon molecules onto the surface of the graphene oxide. In that case, the electrons interact with the hydrocarbons rather than the graphene and oxygen atoms, leaving behind liberated carbon atoms as a 3D deposit.

“Depending on how many electrons you bring to it, you can grow structures of different heights away from the etched grooves or from the two-dimensional plane,” he said. “You can think of it almost like holographic writing with excited electrons, substrate and adsorbed molecules combined at the right time and the right place.”

The process should be suitable for depositing materials such as metals and semiconductors, though precursors would need to be added to the chamber for their creation. The 3D structures, just nanometers high, could serve as spacers between layers of graphene or as active sensing elements or other devices on the layers.

“If you want to use graphene or graphene oxide for quantum mechanical devices, you should be able to position layers of material with a separation on the scale of individual carbon atoms,” Fedorov said. “The process could also be used with other materials.”

Using the technique, high-energy electron beams can produce feature sizes just a few nanometers wide. Trenches etched in surfaces could be filled with metals by introducing metal atoms contained in precursors.

Beyond simple patterns, the process could also be used to grow complex structures. “In principle, you could grow a structure like a nanoscale Eiffel Tower with all the intricate details,” Fedorov said. “It would take a long time, but this is the level of control that is possible with electron beam writing.”

Though systems have been built to use multiple electron beams in parallel, Fedorov doesn’t see them being used in high-volume applications. More likely, he said, is laboratory use to fabricate unique structures useful for research purposes.

“We are demonstrating structures that would otherwise be impossible to produce,” he said. “We want to enable the exploitation of new capabilities in areas such as quantum devices. This technique could be an imagination enabler for interesting new physics coming our way with graphene and other interesting materials.”

Tags:  2D materials  Andrei Fedorov  Graphene  graphene oxide  nanomaterials  Pusan National University 

Share |
PermalinkComments (0)
 

New low-cost method upscales & produces twisted multilayer highly conducting graphene

Posted By Graphene Council, Thursday, September 17, 2020
Graphene, the one-atom-thick sheet of carbon atoms, which is a boon for energy storage, coatings, sensors as well as superconductivity, is difficult to produce while retaining its single layered properties.

A new low-cost method of upscaling production of graphene while preserving its single layered properties, developed by Indian scientists, may reduce the cost of producing this thinnest, strongest and most conductive material in the world.

Researchers from Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) an autonomous institute under the Department of Science & Technology, Government of India through their recent research work have upscaled graphene production while retaining its thin layered properties. This was made possible by a simple, affordable method wherein naphthalene coated nickel foil was heated for a few minutes in an ordinary vacuum by joule heating and was cooled to get twisted layers of graphene. Careful study using electronic diffraction and Raman scattering showed that the 2D single-crystal nature of the atomic lattice of the graphene is retained even in the multilayer stack. The twisted multilayer graphene that results is also highly conducting.

In the research by Nikita Gupta (Ph.D. student, JNCASR) and Prof. G.U. Kulkarni (corresponding author ) published in the ‘Journal of Physical Chemistry Letters’, the scientists have also defined a formula to quantify how much single layer like behaviour exists in such a system. The twisted system has multiple layers, each behaving like a single layer, allows variation in the experimental data within one sample, thus making quantification possible to achieve. The derived formula provides an insight into any twisted hexagonal multilayer system and may be used to tune superconductivity.

The researchers used a combination of two techniques to understand and quantify how much single layer like behaviour exists in the graphene system. Raman spectroscopy---a technique to understand whether a graphene species has single layer like behaviour arising because of no interlayer interaction and electron diffraction--a technique to study the morphology of the given twisted system.

Observing fascinating properties of twisted multilayer graphene such as visible absorption band, efficient corrosion resistance, temperature-dependent transport, influencing the crystalline orientation of source material, helped the JNCASR team to understand the landscape of the given twisted multilayer graphene system.

Recent publication in the journal ‘Nature’ by James M. Tour, an eminent peer on this research discovery (https://doi.org/10.1038/s41586-020-1938-0), confirms the upper limit of relative Raman intensity predicted by this work, experimentally. The present understanding of twisted multilayer graphene will help in understanding any twisted hexagonal system. It gives an upper limit of relative Raman intensity which can exist in a particular multilayer graphene system.

Tags:  energy storage  G.U. Kulkarni  Graphene  Jawaharlal Nehru Centre for Advanced Scientific Re  Sensors 

Share |
PermalinkComments (0)
 

Haydale signs collaboration agreements with Dowty Propellers

Posted By Terrance Barkan, Wednesday, September 16, 2020

Haydale has announced the signing of contracts for the provision of services for the collaborative development of graphene and nano material enhanced products for use in Dowty Propellers’ products. Haydale will assist Dowty in examining the feasibility and development of various material technologies, pertinent to Dowty’s future product development, involving the incorporation of graphene and other nano materials.

Haydale will work with Dowty to develop erosion-resistant coatings with the addition of Haydale’s proprietary Silicone Carbide (SiC) Microfibers. Further development work is ongoing to establish the feasibility of potential industry-changing technology for the turboprop sector. In addition to these topics, Haydale will develop graphene-enhanced functional inks for strain sensing using its surface engineered HDPlas graphene nanomaterials.

Jonathan Chestney, Dowty Propellers Engineering Director, said: “We are excited by the partnership with Haydale as we believe the exploration of the benefits of nanomaterial technology for our future products will significantly enhance our offering to our customers. We continue to strive for improvement in both our current and future products and developing partnerships like this are key to making that a success.”

Keith Broadbent, Haydale CEO, said: “We are really pleased that Dowty Propellers has engaged Haydale as a collaborative development partner. The team is ideally placed to assist with research, development and enhanced materials for evaluation and commercialization by Dowty in their products and/or processes. I anticipate some great developments from the projects carried out.”

This post has not been tagged.

Share |
PermalinkComments (0)
 

Understanding electron transport in graphene nanoribbons

Posted By Graphene Council, Tuesday, September 15, 2020
Graphene is a modern wonder material possessing unique properties of strength, flexibility and conductivity whilst being abundant and remarkably cheap to produce, lending it to a multitude of useful applications -- especially true when these 2D atom-thick sheets of carbon are split into narrow strips known as Graphene Nanoribbons (GNRs).

New research published in EPJ Plus, authored by Kristians Cernevics, Michele Pizzochero, and Oleg V. Yazyev, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, aims to better understand the electron transport properties of GNRs and how they are affected by bonding with aromatics. This is a key step in designing technology such chemosensors.

"Graphene nanoribbons -- strips of graphene just few nanometres wide -- are a new and exciting class of nanostructures that have emerged as potential building blocks for a wide variety of technological applications," Cernevics says.

The team performed their investigation with the two forms of GNR, armchair and zigzag, which are categorised by the shape of the edges of the material. These properties are predominantly created by the process used to synthesise them. In addition to this, the EPFL team experimented p-polyphenyl and polyacene groups of increasing length.

"We have employed advanced computer simulations to find out how electrical conductivity of graphene nanoribbons is affected by chemical functionalisation with guest organic molecules that consist of chains composed of an increasing number of aromatic rings," says Cernevics.

The team discovered that the conductance at energies matching the energy levels of the corresponding isolated molecule was reduced by one quantum, or left unaffected based on whether the number of aromatic rings possessed by the bound molecule was odd or even. The study shows this 'even-odd effect' originates from a subtle interplay between the electronic states of the guest molecule spatially localised on the binding sites and those of the host nanoribbon.

"Our findings demonstrate that the interaction of the guest organic molecules with the host graphene nanoribbon can be exploited to detect the 'fingerprint' of the guest aromatic molecule, and additionally offer a firm theoretical ground to understand this effect," Cernevics concludes: "Overall, our work promotes the validity of graphene nanoribbons as promising candidates for next-generation chemosensing devices."

These potentially wearable or implantable sensors will rely heavily on GRBs due to their electrical properties and could spearhead a personalised health revolution by tracking specific biomarkers in patients.

Tags:  Biosensor  EPFL  Graphene  Graphene Nanoribbons  Healthcare  Kristians Cernevics  Michele Pizzochero  Oleg V. Yazyev  Sensors 

Share |
PermalinkComments (0)
 

A multivalued optical memory composed of 2D materials

Posted By Graphene Council, Friday, September 11, 2020
The National Institute for Materials Science (NIMS) has developed a memory device capable of storing multiple values using both optical and voltage input values. This device composed of layered two-dimensional materials is able to optically control the amount of charge stored in these layers. This technology may be used to significantly increase the capacity of memory devices and applied to the development of various optoelectronic devices. The research was published in Advanced Functional Materials ("Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals fewlayer-ReS2/h-BN/Graphene Heterostructures").

Memory devices used to store information (e.g., flash memory) play an indispensable role in today’s information society. The recording density of these devices has substantially increased in the past 20 years. In anticipation of widespread adoption of IoT technologies in the near future, it is desirable to accelerate the development of higher speed, larger capacity memory devices.

However, the current approach to increasing memory capacity and energy efficiency through silicon microfabrication is about to reach its limits. Development of memory devices with different working principles therefore has been awaited.

To meet expected technology needs, this research group has developed a transistor memory device composed of layered two-dimensional materials, including rhenium disulfide (ReS2) – a semiconductor – serving as a channel transistor, hexagonal boron nitride (h-BN) used as an insulating tunnel layer and graphene functioning as a floating gate.

This device records data by storing charge carriers in the floating gate in a manner similar to conventional flash memory. Hole-electron pairs in the ReS2 layer are prone to excitation when irradiated with light. The number of these pairs can be regulated by changing the intensity of the light.

The group succeeded in creating a mechanism that allows the amount of charge in the graphene layer to gradually decrease as the exited electrons once again couple with the holes in this layer. This success enabled the device to operate as a multivalued memory capable of efficiently controlling the amount of stored charge in stages through the combined use of light and voltage.

Moreover, this device can operate energy efficiently by minimizing electric current leakage—an achievement made possible by layering two-dimensional materials, thereby smoothening the interfaces between them at an atomic level.

This technology may be used to significantly increase the capacity and energy efficiency of memory devices. It also may be applied to the development of various optoelectronic devices, including optical logic circuits and highly sensitive photosensors capable of controlling the amount of charge stored in them through combined use of light and voltage.

This project was carried out by a research group consisting of Yutaka Wakayama (Leader of the Quantum Device Engineering Group (QDEG), International Center for Materials Nanoarchitectonics (MANA), NIMS), Bablu Mukherjee (Postdoctoral Researcher, QDEG, MANA, NIMS) and Shu Nakaharai (Principal Researcher, QDEG, MANA, NIMS).

This study was conducted in conjunction with another project entitled “Development of a ultra-sensitive photosensor using two-dimensional atomic film layers” funded by the Grant-in-Aid for JSPS Fellows.

Tags:  2D materials  Bablu Mukherjee  Graphene  International Center for Materials Nanoarchitecton  optoelectronics  Semiconductor  Sensors  Shu Nakaharai  The National Institute for Materials Science  Yutaka Wakayama 

Share |
PermalinkComments (0)
 

Spotlight: Airbus' Tamara Blanco Valera talks about multifunctional graphene-based materials for sustainable aeroplanes

Posted By Graphene Council, Friday, September 11, 2020

Note: This content was developed by the Graphene Flagship. 

Tamara Blanco Varela works as a Research and Technology Engineer at Graphene Flagship Partner company Airbus, based near Madrid in Spain. Her extensive experience encompasses over 15 years of work on aeronautical composite materials and processes. She leads all Airbus activities related to graphene, and her ultimate goal is to fully exploit the properties of graphene to enhance Airbus's composites and endow them with new functionalities.

Graphene has a wide range of potential applications in the aeronautics industry. Among them, Blanco Varela is currently working on anti-/de-icing systems, as well as enhancing the mechanical properties of materials and decreasing resin moisture absorption. She has been actively involved with the Graphene Flagship since its inception in 2013, and she is currently part of the Graphene Flagship's Work Package for Composites, the Work Package for Production and the Spearhead Project GICE.

We spoke about her background, her career choices and what drives her to succeed, and she was and discuss how graphene-enriched multifunctional materials can contribute to more sustainable aircraft.

What made you choose a career in science, and how did you end up working at Airbus?

When I was just a kid in the 1980s, and people were asking "what do you want to be when you grow up?", I never would've thought that I'd end up working as an engineer for a leading company like Airbus. This was unimaginable for a girl in a little town in north-western Spain, where I grew up.

Just to give you an idea, there are more than ten times as many Airbus employees than people living in my hometown! I decided to break the mold and study engineering, because I liked the sciences more than humanities.

I left my beloved hometown and family to go to Madrid, and then after an internship, my great opportunity arrived: I started to work as a subcontractor for Airbus in the Composite Materials and Processes Department. Soon, I knew I'd made the best choice, and I'm still extremely proud of and passionate about this company and my job.

Can you tell us about what you're working on now?

My project centres around using graphene and layered materials to enhance commercial aircraft – mainly their structural elements. Within this field, we aim to devise new materials with high damage tolerance, strength and stiffness.

Moreover, we want to design multifunctional materials with new features and functionalities, like electrical conductivity to cope with lightning strikes, thermal conductivity for anti-icing, heat exchange and other purposes, and self-sensing materials that can identify potential damage and cracks.

Why does graphene have so much potential for the aerospace industry?

The current composites used for structural elements are made of resins and carbon fibers. The problem is that resins absorb water and moisture in wet conditions. Graphene can contribute to improving the design, weight and barrier properties of these composites, slowing moisture absorption and also acting as fire-retardant.

Graphene has the potential to decrease the energy consumption of several manufacturing processes, including resin curing, adhesive joining, welding, additive manufacturing and 3D printing.

In aircraft, the properties of graphene can be also exploited for anti-/de-icing, electrical conductivity, anti-corrosion and anti-contamination, anti-bacterial, easy-cleaning, anti-static surfaces, electromagnetic interference shielding and so on.

How can these new graphene technologies help us work towards a sustainable future?

By reducing CO2 emissions and moving towards zero emissions aircraft, the aeronautical sector is already tackling many great challenges in the fight against climate change. We aim to halve our carbon footprint from 2005 levels by 2050, and the advanced, multifunctional and sustainable composites created by Airbus are key players in the move towards aircrafts, which consume less fuel. Graphene is one of the most promising materials to contribute to these future composites.

What are the biggest milestones in your career so far?

I participated in failure analysis, qualifying composites for the Airbus A380 and A350 aeroplanes. I was also involved in the development of new, enhanced thermoset resins and thermoplastic materials, with a recent focus on cost reduction.

I have always been very active in communication and dissemination by participating in plenty of conferences, publications, patents and technology-watch activities. I have built a wide network of people working at research centers, material suppliers, universities, and other divisions of Airbus. I can say that I'm known within my field!

At the end of 2019, I was proud to be selected by Airbus as an expert in multifunctional materials.

What are your views for the future?

I think we are starting a new era where multifunctional materials are key actors to cope with great technical challenges. I would like to be part of this endeavour, by leading and aligning all stakeholders to include these materials in the aircraft as soon as possible.

Do you have a role model or someone who inspires you to achieve?

My role model is the CTO of Airbus, Grazia Vittadini. She is the first female on the Airbus Executive Committee and Chief Technology Officer in the aeronautical industry, whose engineering workforce is made up of just 17 percent women worldwide. Furthermore, she served as the Director of the Airbus Foundation Board and is a member of the Inclusion and Diversity Steering Committee. 

I really respect her professional philosophy and open mindset. She is very inspirational for me.

To quote Vittadini: "The only limits are the ones we impose ourselves."

Why do you feel that diversity in science and technology is important for the Graphene Flagship's progress?

Diversity is key in science and technology since it inspires innovation. I fully support diverse and inclusive work scientific or industrial environments, which attract the best talents, no matter their nationality, colour, gender, sexual orientation. Promoting diversity is essential for innovation, technology and success. It should be in the DNA of any company and research project.

Tags:  Aerospace  Airbus  composite materials  Graphene  Graphene Flagship  Grazia Vittadini  Tamara Blanco Varela 

Share |
PermalinkComments (0)
 
Page 2 of 79
1  |  2  |  3  |  4  |  5  |  6  |  7  >   >>   >|