Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Stopping the unstoppable with atomic bricks

Posted By Graphene Council, Monday, June 29, 2020
Graphene's unique 2D structure means that electrons travel through it differently to most other materials. One consequence of this unique transport is that applying a voltage to them doesn't stop the electrons like it does in most other materials. This is a problem because to make useful applications out of graphene and its unique electrons like quantum computers, it is necessary to be able to stop and control graphene electrons.

An interdisciplinary team of scientists from the Universidad Autonoma de Madrid (Spain), Université Grenoble Alpes (France), International Iberian Nanotechnology Laboratory (Portugal) and Aalto University has managed to solve this long-standing problem. They combined experimental researchers including Eva Cortés del Río, Pierre Mallet, Héctor González‐Herrero, José María Gómez‐Rodríguez, Jean‐Yves Veuillen and Iván Brihuega with theorists, including Joaquín Fernández-Rossier and Jose Lado, assistant Professor in the department of Applied Physics at Aalto.

The experimental team used atomic bricks to build walls capable of stopping the graphene electrons. This was achieved by creating atomic walls that confined the electrons, leading to structures whose spectrum was then compared with theoretical predictions, demonstrating that electrons were confined. In particular, it was obtained that the engineered structures gave rise to nearly perfect confinement of electrons, as demonstrated from the emergence of sharp quantum well resonances with a remarkably long lifetime.

The work, published this week in Advanced Materials, demonstrates that impenetrable walls for graphene electrons can be created by collective manipulation of a large number of hydrogen atoms. In the experiments, a scanning tunnelling microscope was used to construct artificial walls with sub nanometric precision. This led to graphene nanostructures of arbitrarily complex shapes, with dimensions ranging from two nanometres to one micron.

Importantly, the developed method is non-destructive, allowing to erase and rebuild the nanostructures at will, providing an unprecedented degree of control to create artificial graphene devices. The experiments demonstrate that the engineered nanostructures are capable of perfectly confining the graphene electrons in these artificially designed structures, overcoming the critical challenge imposed by Klein tunnelling. Ultimately, this opens up a plethora of exciting new possibilities, as the created nanostructures realize graphene quantum dots that can be selectively coupled, opening ground-breaking possibilities for artificially designed quantum matter.

Tags:  2D materials  Aalto University  Graphene  Jose Lado  nanostructures  quantum materials  Universidad Autonoma de Madrid 

Share |
PermalinkComments (0)
 

Researchers print, tune graphene sensors to monitor food freshness, safety

Posted By Graphene Council, Friday, June 26, 2020
Researchers dipped their new, printed sensors into tuna broth and watched the readings. It turned out the sensors – printed with high-resolution aerosol jet printers on a flexible polymer film and tuned to test for histamine, an allergen and indicator of spoiled fish and meat – can detect histamine down to 3.41 parts per million.

The U.S. Food and Drug Administration has set histamine guidelines of 50 parts per million in fish, making the sensors more than sensitive enough to track food freshness and safety.

Making the sensor technology possible is graphene, a supermaterial that’s a carbon honeycomb just an atom thick and known for its strength, electrical conductivity, flexibility and biocompatibility. Making graphene practical on a disposable food-safety sensor is a low-cost, aerosol-jet-printing technology that’s precise enough to create the high-resolution electrodes necessary for electrochemical sensors to detect small molecules such as histamine.

“This fine resolution is important,” said Jonathan Claussen, an associate professor of mechanical engineering at Iowa State University and one of the leaders of the research project. “The closer we can print these electrode fingers, in general, the higher the sensitivity of these biosensors.”

Claussen and the other project leaders – Carmen Gomes, an associate professor of mechanical engineering at Iowa State; and Mark Hersam, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University in Evanston, Illinois – have recently reported their sensor discovery in a paper published online by the journal 2D Materials. (See sidebar for a full listing of co-authors.)

The National Science Foundation, the U.S. Department of Agriculture, the Air Force Research Laboratory and the National Institute of Standards and Technology have supported the project.

The paper describes how graphene electrodes were aerosol jet printed on a flexible polymer and then converted to histamine sensors by chemically binding histamine antibodies to the graphene. The antibodies specifically bind histamine molecules.

The histamine blocks electron transfer and increases electrical resistance, Gomes said. That change in resistance can be measured and recorded by the sensor.

“This histamine sensor is not only for fish,” Gomes said. “Bacteria in food produce histamine. So it can be a good indicator of the shelf life of food.”

The researchers believe the concept will work to detect other kinds of molecules, too.

“Beyond the histamine case study presented here, the (aerosol jet printing) and functionalization process can likely be generalized to a diverse range of sensing applications including environmental toxin detection, foodborne pathogen detection, wearable health monitoring, and health diagnostics,” they wrote in their research paper.

For example, by switching the antibodies bonded to the printed sensors, they could detect salmonella bacteria, or cancers or animal diseases such as avian influenza, the researchers wrote.

Claussen, Hersam and other collaborators (see sidebar) have demonstrated broader application of the technology by modifying the aerosol-jet-printed sensors to detect cytokines, or markers of inflammation. The sensors, as reported in a recent paper published by ACS Applied Materials & Interfaces, can monitor immune system function in cattle and detect deadly and contagious paratuberculosis at early stages.

Claussen, who has been working with printed graphene for years, said the sensors have another characteristic that makes them very useful: They don’t cost a lot of money and can be scaled up for mass production.

“Any food sensor has to be really cheap,” Gomes said. “You have to test a lot of food samples and you can’t add a lot of cost.”

Claussen and Gomes know something about the food industry and how it tests for food safety. Claussen is chief scientific officer and Gomes is chief research officer for NanoSpy Inc., a startup company based in the Iowa State University Research Park that sells biosensors to food processing companies.

They said the company is in the process of licensing this new histamine and cytokine sensor technology.

It, after all, is what they’re looking for in a commercial sensor. “This,” Claussen said, “is a cheap, scalable, biosensor platform.”

Tags:  3D Printing  Biosensor  Carmen Gomes  Graphene  Iowa State University  Jonathan Claussen  Mark Hersam  Northwestern University  Sensors 

Share |
PermalinkComments (0)
 

Physicists obtain molecular 'fingerprints' using plasmons

Posted By Graphene Council, Friday, June 26, 2020
Scientists from the Center for Photonics and 2D Materials of the Moscow Institute of Physics and Technology (MIPT), the University of Oviedo, Donostia International Physics Center, and CIC nanoGUNE have proposed a new way to study the properties of individual organic molecules and nanolayers of molecules. The approach, described in Nanophotonics, relies on V-shaped graphene-metal film structures.

Nondestructive analysis of molecules via infrared spectroscopy is vital in many situations in organic and inorganic chemistry: for controlling gas concentrations, detecting polymer degradation, measuring alcohol content in the blood, etc. However, this simple method is not applicable to small numbers of molecules in a nanovolume. In their recent study, researchers from Russia and Spain propose a way to address this.

A key notion underlying the new technique is that of a plasmon. Broadly defined, it refers to an electron oscillation coupled to an electromagnetic wave. Propagating together, the two can be viewed as a quasiparticle.

The study considered plasmons in a wedge-shaped structure several dozen nanometers in size. One side of the wedge is a one-atom-thick layer of carbon atoms, known as graphene. It accommodates plasmons propagating along the sheet, with oscillating charges in the form of Dirac electrons or holes. The other side of the V-shaped structure is a gold or other electrically conductive metal film that runs nearly parallel to the graphene sheet. The space in between is filled with a tapering layer of dielectric material -- for example, boron nitride -- that is 2 nanometers thick at its narrowest (fig. 1).

Such a setup enables plasmon localization, or focusing. This refers to a process that converts regular plasmons into shorter-wavelength ones, called acoustic. As a plasmon propagates along graphene, its field is forced into progressively smaller spaces in the tapering wedge. As a result, the wavelength becomes many times smaller and the field amplitude in the region between the metal and graphene gets amplified. In that manner, a regular plasmon gradually transforms into an acoustic one.

"It was previously known that polaritons and wave modes undergo such compression in tapering waveguides. We set out to examine this process specifically for graphene, but then went on to consider the possible applications of the graphene-metal system in terms of producing molecular spectra," said paper co-author Kirill Voronin from the MIPT Laboratory of Nanooptics and Plasmonics.

The team tested its idea on a molecule known as CBP, which is used in pharmaceutics and organic light emitting diodes. It is characterized by a prominent absorption peak at a wavelength of 6.9 micrometers. The study looked at the response of a layer of molecules, which was placed in the thin part of the wedge, between the metal and graphene. The molecular layer was as thin as 2 nanometers, or three orders of magnitude smaller than the wavelength of the laser exciting plasmons. Measuring such a low absorption of the molecules would be impossible using conventional spectroscopy.

In the setup proposed by the physicists, however, the field is localized in a much tighter space, enabling the team to focus on the sample so well as to register a response from several molecules or even a single large molecule such as DNA.

There are different ways to excite plasmons in graphene. The most efficient technique relies on a scattering-type scanning near-field microscope. Its needle is positioned close to graphene and irradiated with a focused light beam. Since the needle point is very small, it can excite waves with a very large wave vector -- and a small wavelength. Plasmons excited away from the tapered end of the wedge travel along graphene toward the molecules that are to be analyzed. After interacting with the molecules, the plasmons are reflected at the tapered end of the wedge and then scattered by the same needle that initially excited them, which thus doubles as a detector.

"We calculated the reflection coefficient, that is, the ratio of the reflected plasmon intensity to the intensity of the original laser radiation. The reflection coefficient clearly depends on frequency, and the maximum frequency coincides with the absorption peak of the molecules. It becomes apparent that the absorption is very weak -- about several percent -- in the case of regular graphene plasmons. When it comes to acoustic plasmons, the reflection coefficient is tens of percent lower. This means that the radiation is strongly absorbed in the small layer of molecules," adds the paper's co-author and MIPT visiting professor Alexey Nikitin, a researcher at Donostia International Physics Center, Spain.

After certain improvements to the technological processes involved, the scheme proposed by the Russian and Spanish researchers can be used as the basis for creating actual devices. According to the team, they would mainly be useful for investigating the properties of poorly studied organic compounds and for detecting known ones.

Tags:  2D materials  boron nitride  Graphene  Kirill Voronin  Moscow Institute of Physics and Technology  Photonics  University of Oviedo 

Share |
PermalinkComments (0)
 

Researchers discover new boron-lanthanide nanostructure

Posted By Graphene Council, Friday, June 26, 2020
The discovery of carbon nanostructures like two-dimensional graphene and soccer ball-shaped buckyballs helped to launch a nanotechnology revolution. In recent years, researchers from Brown University and elsewhere have shown that boron, carbon’s neighbor on the periodic table, can make interesting nanostructures too, including two-dimensional borophene and a buckyball-like hollow cage structure called borospherene.

Now, researchers from Brown and Tsinghua University have added another boron nanostructure to the list. In a paper published in Nature Communications, they show that clusters of 18 boron atoms and three atoms of lanthanide elements form a bizarre cage-like structure unlike anything they’ve ever seen. 

“This is just not a type of structure you expect to see in chemistry,” said Lai-Sheng Wang, a professor of chemistry at Brown and the study’s senior author. “When we wrote the paper we really struggled to describe it. It’s basically a spherical trihedron. Normally you can’t have a closed three-dimensional structure with only three sides, but since it’s spherical, it works.”

The researchers are hopeful that the nanostructure may shed light on the bulk structure and chemical bonding behavior of boron lanthanides, an important class of materials widely used in electronics and other applications. The nanostructure by itself may have interesting properties as well, the researchers say. 

“Lanthanide elements are important magnetic materials, each with very different magnetic moments,” Wang said. “We think any of the lanthanides will make this structure, so they could have very interesting magnetic properties.”

Wang and his students created the lanthanide-boron clusters by focusing a powerful laser onto a solid target made of a mixture of boron and a lanthanide element. The clusters are formed upon cooling of the vaporized atoms. Then they used a technique called photoelectron spectroscopy to study the electronic properties of the clusters. The technique involves zapping clusters of atoms with another high-powered laser. Each zap knocks an electron out of the cluster. By measuring the kinetic energies of those freed electrons, researchers can create a spectrum of binding energies for the electrons that bond the cluster together.

“When we see a simple, beautiful spectrum, we know there’s a beautiful structure behind it,” Wang said. 

To figure out what that structure looks like, Wang compared the photoelectron spectra with theoretical calculations done by Professor Jun Li and his students from Tsinghua. Once they find a theoretical structure with a binding spectrum that matches the experiment, they know they’ve found the right structure. 

“This structure was something we never would have predicted,” Wang said. “That’s the value of combining theoretical calculation with experimental data.”

Wang and his colleagues have dubbed the new structures metallo-borospherenes, and they’re hopeful that further research will reveal their properties.

Tags:  2D materials  boron nanostructure  Brown University  Graphene  Lai-Sheng Wang  nanostructures  Tsinghua University 

Share |
PermalinkComments (0)
 

Graphene transistors enable selective ion sensing

Posted By Graphene Council, Friday, June 26, 2020
New research shows that graphene field effect transistors can be used to selectively detect ions in a liquid solution. The work, just published in Nature Communications, paves the way to applications such as genome sequencing, medical diagnostics, environmental monitoring, and industrial process control.

State of the art technology for detecting and resolving ions in solution relies on ion sensitive field effect transistors (ISFETs). Standard ISFETs are made of silicon, due to the ease of technological processing, however silicon ISFETs have some drawbacks that hinder their performance in real-life scenarios.

To achieve selectivity to different ionic species, ISFETs that are selective to specific ions are assembled into arrays and post-processing is used to estimate ion concentration. Since many ISFETs are packed on small areas to implement selectivity, each ISFET has to be made small, which leads to low-frequency noise that is prominent in silicon. Increasing the size of individual ISFETs leads to loss of resolution, which imposes a tradeoff that limits practical use.

The present research, reported by teams in Canada and Spain, overcomes the tradeoff by using graphene instead of silicon as the ISFET channel. Graphene has high carrier mobility even in large-area devices, which enables construction of a single large sensor for multiple ionic species. Post-processing of the transistor signal enables the measuring of concentration of K+, Na+, NH4+, NO3-, SO42-, and Cl- ions down to concentrations lower than 10-5 M in a multianalyte solution. These ions were chosen due to their prominence in agriculture runoff, hence the importance of their detection in water quality monitoring.

Practical graphene ISFET use was demonstrated by monitoring the uptake of ions by duckweed in an aquarium over a period of three weeks. The researchers tracked, with high precision and selectivity, the concentration of seven different ionic species over time after adding plant nutrients to the aquarium. This novel work demonstrates that large-area graphene ISFETs can be fabricated from wafer scale graphene by a facile method, yielding ISFETs with a high signal-to-noise-ratio and high-resolution sensing. Graphene ISFETs hence overcome poor selectivity typically associated with ISFETs made of other materials and can be applied to real-life scenarios in environmental sensing.

Tags:  Electronics  Graphene  Sensors  transistor 

Share |
PermalinkComments (0)
 

EU demand leads to Talga expanding battery plant

Posted By Graphene Council, Friday, June 26, 2020
Overwhelming European demand sees Australia’s battery anode company Talga Resources plan for expanded output at its new Swedish battery anode factory.

Expressions of interest received for Talga’s lithium-ion battery anode products exceed 300% of planned annual capacity of the Vittangi Anode Project, the company says.

Talnode products are now in 36 active commercial engagements covering the majority of planned European li-ion battery manufacturers and six major global automotive OEMs.

Talga says it’s expanding the scale of the Niska scoping study for the Vittangi Project to review larger anode production options as a result of this significant interest.

Li-ion battery megafactories are set to require more than 2.5 million tonnes per annum (tpa) active anode material by 2029, up from about 450,000 tpa anode production today, with Europe the fastest growing market.

That’s because worldwide li-ion battery demand continues to rapidly increase, with global battery manufacturing capacity set to exceed 2.5 tera-Watt hours (TWh) per annum by 2029 across 142 battery plants.

“Our engagement with European battery companies and automotive OEMs has grown rapidly, with customers attracted by the potential of locally produced anode at competitive costs and with world-leading sustainability,” Talga managing director Mark Thompson says.

”As we progress Talnode-C through commercial qualification stages with customers it is pleasing to note that interest now greatly exceeds our original planned production, and that the need to review expansion options has arisen this early.”

The increased interest means the company is targeting completion of the Niska scoping study in Q3 2020.

While COVID-19 has severely impacted EV sales in the short term, Bloomberg New Energy Finance data shows EV sales hold up better than internal combustion engine (ICE) vehicles due to new (lower cost) models and supportive government policies.

In the quarters prior to the COVID-19 outbreak, EV sales as a percentage of total passenger vehicles rose rapidly in the EU, with Germany and France recording increases of 100% during the period.

Numerous countries across Europe have implemented some form of financial incentives towards customer uptake of EVs, and post COVID-19 these have increased markedly in some countries.

Talga is entering the European market at a time when 100% of anode supply is still sourced from Asia. The company’s marketing team reports that, post COVID-19, localisation is becoming an increasingly significant factor influencing customer’s purchasing decisions.

Tags:  Battery  Graphene  Li-ion batteries  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 

Tour scores prestigious Centenary Prize

Posted By Graphene Council, Friday, June 26, 2020
Rice University chemist James Tour has won a Royal Society of Chemistry Centenary Prize. The award, given annually to up to three scientists from outside Great Britain, recognizes researchers for their contributions to the chemical sciences industry or education and for successful collaborations. Tour was named for innovations in materials chemistry with applications in medicine and nanotechnology.

The prestigious award, established in 1947, comes with a 5,000-pound (about $6,260) cash prize and a medal. Winners are invited to undertake a lecture tour of the United Kingdom, but the COVID-19 pandemic has delayed that until 2021.

Additional winners this year are Teri Odom, the chair and Charles E. and Emma H. Morrison Professor of Chemistry at Northwestern University, and Eric Anslyn, the Welch Regents Chair and University Distinguished Teaching Professor at the University of Texas at Austin. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

“Receiving the Royal Society of Chemistry 2020 Centenary Prize is an enormous honor,” Tour said. “The award recognizes the accomplishments of my research group over a period of 32 years. I am greatly indebted to a host of students, postdocs and collaborators that have carried the weight of this research endeavor.

“We have sought to use chemistry to extend the boundaries of new materials development for use in medicine, electronic devices, nano-enhanced structures and renewable energy platforms,” he said. “It is a joy to realize the work done by this array of people in and with my laboratory has afforded such advances that are being recognized by this Centenary Prize.”

Work by Tour and his group in recent years includes the development of versatile laser-induced graphene, flash graphene from waste material, light-activated nanodrills that destroy cancer cells and “superbug” bacteria, silicon-oxide memory circuits that have flown on the International Space Station, the development of graphene quantum dots from coal, asphalt-based materials to capture carbon dioxide from gas wells, and the use of nanoparticles to quench damaging superoxides after an injury or stroke.

“We live in an era of tremendous global challenges, with the need for science recognized now more so than ever — so it is important to recognize those behind the scenes who are making significant contributions towards improving the world we live in,” said acting Royal Society of Chemistry chief executive Helen Pain. “In recognizing the work of Professor Tour, we are also recognizing the important contribution this incredible network of scientists makes to improve our lives every day.”

Tags:  Graphene  Healthcare  Helen Pain  James Tour  Medicine  nanotechnology  Rice University  Royal Society of Chemistry 

Share |
PermalinkComments (0)
 

New study unveils ultrathin boron nitride films for next-generation electronics

Posted By Graphene Council, Friday, June 26, 2020
An international team of researchers, affiliated with UNIST has unveiled a novel material that could enable major leaps in the miniaturization of electronic devices. Published in the prestigious journal Nature, this study represent a significant achievement for future electronics.

This breakthrough comes from a research, conducted by Professor Hyeon Suk Shin (School of Natual Sciences, UNIST) and Principal Researcher Dr. Hyeon-Jin Shin from Samsung Advanced Institute of Technology (SAIT), in collaboration with Graphene Flagship researchers from University of Cambridge (UK) and Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain).

In this study, the team successfully demonstrated the synthesis of thin film of amorphous boron nitride (a-BN) with extremely low dielectric constant as well as high breakdown voltage and superior metal barrier properties. The research team noted that this newly fabricated material has great potential as interconnect insulators in the next-generation of electronic circuits.

In the ongoing process of miniaturization of logic and memory devices in electronic circuits, minimizing the dimensions of interconencts - metal wires that link the different device components on the chip - is crucial to guarantee improved performance and faster response of the device. Extensive research efforts have been devoted to decreasing the resistance of scaled interconnects because integration of dielectrics using complementary metal oxide semiconductor (CMOS) compatible processes has proven to be exceptionally challenging. According to the research team, the required interconnect isolation materials should not only possess low relative dielectric constants (referred to as k-values), but should also be thermally, chemically, and mechanically stable.

There has been an ongoing quest to obtain materials with ultra-low-k (relative permittivity around or below 2) avoiding the artificial addition of pores in the thin film in the semiconductor industry for at least the past 20 years. Several attempts had been made to develop materials with desired characteristics, yet those materials have failed to be successfully integrated in interconnects due to poor mechanical properties or poor chemical stability upon integration, causing reliability failures.

In this study, the joint research has succeeded in demonstrating a Back-End-ofthe-Line (BEOL) compatible approach to grow amorphous boron nitride (a-BN) with extremely low-k dielectrics. In particular, they synthesized approximately 3 nm thin a-BN on a Si substrate, using low temperature remote inductively coupled plasma-chemical vapour deposition (ICP-CVD). The resulting material showed an extremely low dielectric constant in the range of 1.78, which is 30% lower than the dielectric constant of currently available insulators.

In this study, the joint research has succeeded in demonstrating a Back-End-ofthe-Line (BEOL) compatible approach to grow amorphous boron nitride (a-BN) with extremely low-k dielectrics. In particular, they synthesized approximately 3 nm thin a-BN on a Si substrate, using low temperature remote inductively coupled plasma-chemical vapour deposition (ICP-CVD). The resulting material showed an extremely low dielectric constant in the range of 1.78, which is 30% lower than the dielectric constant of currently available insulators.

"We found that temperature was the most important parameter with ideal a-BN film deposition occurring at 400° C," says Seokmo Hong in the Doctoral program of Natural Sciences, the first author of the study. "This material with ultra-low-k also manifests a high breakdown voltage and likely superior metal barrier properties, making the film very attractive for practical electronic applications."

Angle-dependent near-edge X-ray absorption fine structure (NEXAFS) measured in partial electron-yield (PEY) mode at Pohang Light Source-II 4D beam line was also used to investigate the chemical and electronic structures of a-BN. Their findings indicated that the irregular, random atomic arrangement causes the dielectric constant value to drop.

The new material also manifests excellent mechanical properties of high strength. Moreover, when researchers tested the diffusion barrier properties of a-BN in very harsh conditions, they found it can prevent metal atom migration from the interconnects into the insulator. This result will help resolves a long-standing issue of interconnects in CMOS integrated circuit fabrication, enabling further miniaturaization of electronic devices.

"Development of electrically, mechanically and thermally robust low-k materials (k < 2) has long been technically challenging," says Dr. Hyeon-Jin Shin from Samsung Advanced Institute of Technology (SAIT). "Our research is also a great example that shows companies and academic institutions working together to create greater synergy."

"Our results demonstrate that the amorphous counterpart of two-dimensional hexagonal BN possesses the ideal low-k dielectric characteristics for high-performance electronics," says Professor Shin. "If they are commercialized, it will be a great help in overcoming the crisis looming over the semiconductor industry."

Tags:  boron nitride  Electronics  Graphene  hexagonal boron nitride  Hyeon Suk Shin  Hyeon-Jin Shin  Samsung Advanced Institute of Technology  UNIST 

Share |
PermalinkComments (0)
 

Gridtential Energy and LOLC Advanced Technologies Team up on New Bipolar Battery Technology

Posted By Graphene Council, Wednesday, June 24, 2020
Gridtential Energy, the inventor and developer of Silicon Joule™ bipolar battery technology and LOLC Advanced Technologies, the research and advanced technology arm of LOLC Group announce that they have entered into a technology evaluation agreement.

Under the agreement, over the next few months, LOLC Advanced Technologies and Gridtential Energy will collaborate on prototyping lead batteries with the combined advantages of Silicon Joule™ bipolar silicon plates and AltaLABGX, the Graphene battery additive applied to active materials, supplied by Ceylon Graphene Technologies, CGT (a joint venture between the LOLC Group and Sri Lanka Institute of Nanotechnology (SLINTEC). Preliminary work indicates that the combination of these elements will lead to higher performing batteries in energy density, charging rates and cycle life.

Silicon Joule™ bipolar technology has created an innovative class of lead batteries with silicon at its core. It is a design driven, low cost, high performance, patented energy storage solution that provides improved power density, cycle life, dynamic charge acceptance and temperature range, with up to 40% lower weight, while retaining full lead-battery recyclability. This is all accomplished while leveraging existing technologies from mature industry supply chains – allowing rapid adoption of existing lead-battery infrastructure.

"We are pleased to be working with LOLC Advanced Technologies and Ceylon Graphene Technologies, leaders in battery manufacturing solutions and graphene battery additives respectively. We expect that leveraging leading-edge electro chemistry with our highly efficient Silicon Joule bipolar design will produce industry leading performance with significantly lower weight," said Gridtential Energy CEO, John Barton. "Whether it is longer cycle-life or greater charge/discharge performance, Gridtential is changing the way that OEMs in automotive, 5G telecom, and stationary power markets think about high-performance, low-cost, safe energy storage.

"Every day, we are making it easier to leap into the Silicon Joule Technology future. Whether it is through our rapid prototyping development kits, off-the-shelf reference batteries, equipment manufacturing partners, and now additive experts, the adoption ecosystem has never been stronger. We are pleased that more and more battery manufacturing companies are taking advantage of our technology - now with Graphene battery additive - to produce lead-based products that can compete with lithium. We are quite confident that first movers will be richly rewarded with commercial success."

With Silicon Joule™ bipolar battery technology from Gridtential Energy, that combines the benefits of lead batteries with silicon-enabled, high performance characteristics, battery manufactures world-wide, will be prepared to meet the challenge.

"Worldwide demand is increasing for superior energy storage systems at the edge and driving innovation. LOLC Advanced Technologies with Ceylon Graphene Technologies are improving battery electro-chemistry with our pure graphene and our advanced manufacturing expertise. Partnering with Gridtential's Silicon Joule bipolar solution will lead the advancements in safe, reliable and higher performing lead batteries," said, Chairman Ishara Nanayakkara, LOLC Group

Tags:  Batteries  Battery  Ceylon Graphene Technologies  Energy Storage  Graphene  Gridtential Energy  Ishara Nanayakkara  John Barton  LOLC Group 

Share |
PermalinkComments (0)
 

Talga Looks to Expand Battery Anode Capacity

Posted By Graphene Council, Wednesday, June 24, 2020
Battery  anode  company Talga  Resources  Ltd is  pleased  to provide an update on the development of the Vittangi Anode Project in northern Sweden.   As part of this  on-going  development  the  Company  is  engaging  directly  with  lithium-ion  (“Li-ion”)  battery manufacturers towards purchase agreements for its planned anode production.

Commercial   samples   of   Talnode-C,   and   in   some   cases   Talnode-Si,   are   progressing   through confidential  qualification  processes  under  36  active  customer  engagements.  These  include  the majority of announced Li-ion battery manufacturers in Europe (see Figure 1) and six of the world’s major automotive OEMs.

Expressions of Interest received by engaged parties for supply of Talnode-C in 2023 exceeds three times the annual production capacity proposed in the Company’s Pre-feasibility Study1. As a result of this  interest,  Talga  is  expanding  the  Niska  Scoping  Study  underway  to  evaluate  significantly  larger anode production options for the overall Vittangi Project.

Commenting on the Company’s progress, Talga Managing Director Mark Thompson said: “Our engagement  with  European  battery  companies  and  automotive  OEMs  has  grown  rapidly,  with customers attracted by the potential of locally produced anode at competitive costs and with world- leading  sustainability.     As  we  progress  Talnode-C  through  commercial  qualification  stages  with customers it is pleasing to note that interest now greatly exceeds our original planned production, and that the need to review expansion options has arisen this early.”

Planning for expansion of anode production – Niska scoping study

Based on the strong interest from industry and the anticipated permitting timeframes in Sweden, the  Company  has  decided  to  expand  the  Niska  scoping  study  of  the  Vittangi  Project  to  review significantly  larger  anode  production  options.  The  outcomes  will  be  in  addition  to  the  current Nunasvaara South PFS production plan of 19,000 tpa*.

This  scoping  study  is  underway  on Talga’s  three  Vittangi  graphite  resources  not  currently  in  the PFS; Nunasvaara North, Niska South and Niska North (“Niska Scoping Study”), all located within approximately  2.5km  kilometres  north  of  Nunasvaara  South  (see  Figure  2).    Collectively  these JORC  resources  total  6.5  million  tonnes  at  26.8%Cg  (see  Table  1),  including  a  higher  grade resource domain at Nunasvaara North of 900,000 tonnes at 33.0%Cg (see Table 2).

A  mining  study  supporting  the  larger  scale  project  has  been  completed,  and  metallurgical  and battery  product  testwork  on  composite  samples  is  underway.  Due  to  the  significant  increase  in scale, the Company is targeting completion of the Niska Scoping Study in Q3 2020.

Li-ion anode market growth

Worldwide Li-ion battery demand continues to rapidly increase, with global battery manufacturing capacity set to exceed 2.5 tera-watt hours (TWh) per annum by 2029 across 142 battery plants. This will require >2,500,000 tpa of graphite anode, up from ~450,000 tpa anode production today. Europe  is  the  world’s  fastest  growing  region  for  Li-ion  battery  manufacturing  and  will  require
500,000 tpa of new graphite anode supply by 2029.2

While the COVID-19 outbreak in 2020 has severely impacted electric vehicle (“EV”) sales in the short  term,  Bloomberg  New  Energy  Finance  data3  shows  EV  sales  hold  up  better  than  internal combustion engine vehicles due to new (lower cost) models and supportive government policies.

In the quarters prior to the COVID-19 outbreak EV sales as % of total passenger vehicles rose rapidly  in  the  EU,  with  Germany  and  France  recording  increases  of  100%  during  the  period4. Numerous countries across Europe have implemented some form of financial incentives towards customer uptake of EVs, and post COVID-19 these have increased markedly in some countries5.

Competent Persons Statement

The Niska Mineral Resource estimate was first reported in the Company’s announcement dated 15 October  2019  titled  ‘Talga  Substantially  Increases  Flagship  Graphite  Resource  Size,  Grade  and Status’. The Company confirms that it is not aware of any new information or data that materially affects  the  information  included  in  the  previous  market  announcement  and  that  all  material assumptions and technical parameters underpinning the Resource estimate in the previous market announcement continue to apply and have not materially changed.

The Nunasvaara Mineral Resource estimate was first reported in the Company’s announcement dated 27 April 2017 titled ‘Talga boosts Swedish graphite project with maiden Niska resource’. The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous market announcement and that all material assumptions and technical parameters underpinning the Resource estimate in the previous market announcement continue to apply and have not materially changed.

The Nunasvaara Ore Reserve statement was first reported in the Company’s announcement dated 23 May 2019 titled ‘Outstanding PFS results support Vittangi graphite development’. The Company confirms that it is not aware of any new information or data that materially affects the information included  in  the  previous  market  announcement  and  that  all  material  assumptions  and  technical parameters underpinning the Reserve estimate in the previous market announcement continue to apply and have not materially changed.

Tags:  Automotive  Battery  Graphene  Graphite  Li-ion Batteries  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 
Page 3 of 63
1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  >   >>   >|