Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Graphene gas sensors for real-time monitoring of air pollution

Posted By Graphene Council, Tuesday, January 7, 2020
Scientists at the National Physical Laboratory (NPL), working with partners from the Graphene Flagship, Chalmers University of Technology, the Advanced Institute of Technology, Royal Holloway University and Linköping University, have created a low-cost, low-energy consuming NO2 sensor that measures NO2 levels in real-time.

The World Health Organisation reported that 4.2 million deaths every year are a direct result of exposure to ambient air pollution such as NO2, SO2, NH3, CO2 and CO. One of the most dangerous pollutants, NO2 gas, is produced by burning fossil fuels e.g. in diesel engines. Significant portions of the population in large cities, specifically London, have been consistently exposed to NO2 levels above the legislated limit. Even at very low concentrations NO2 is toxic for humans, leading to breathing problems, asthma attacks and potentially causing childhood obesity and dementia.  

NPL and partners have developed a graphene-based NO2 detector that reports pollutant levels based on changes in its electrical resistance. The high sensitivity of graphene to the local environment has shown to be highly advantageous in sensing applications, where ultralow concentrations of absorbed molecules induce a significant response on the electronic properties of graphene. The unique electronic structure makes graphene the ‘ultimate’ sensing material for applications in environmental monitoring and air quality.  

NPL has developed and demonstrated the novel type of NO2 sensors based on different types of graphene. This low-cost and technologically simple solution uses simple chemiresistor approach and allows for measurements of the exceedingly low levels of NO2 e.g. below 10 ppb. 1 ppb is a concentration equal to a droplet of ink in 2 Olympic size swimming pools. According to the World Health Organisation’s guidelines the targeted level of NO2 pollution in cities is 21 ppb however, the typical average level in London is 30-40 ppb.    

There is a well-demonstrated global need for high sensitivity, low-cost, low-energy consumption miniaturised NO2 gas sensors to be deployed in a dense network and to be used to pinpoint and avoid high pollution hot spots. Such sensors operating in real-time can help to visualise pollution in urban areas with unprecedently high local resolution. 

Olga Kazakova, National Physical Laboratory (NPL) states: “Understanding the problem is the first step to solving the problem. If you only monitor certain junctions or roads for NO2 pollution, you do not get an accurate picture of the environment. In order to do this, a dense network must be set up to show the dynamically changing level of pollution through different times of day and year, so you can get to know the real level of critical exposure.” 

With the data provided by a dense network of graphene sensors, people could us an app to check how much NO2 pollution they might be exposed to on their planned route, and city councils could use this information to dynamically restrict and divert cars near schools and hospitals. This would enable governing bodies to adopt smart and flexible restrictive measures in specific areas recognised as being highly pollutive. 

Tags:  Chalmers University of Technology  environment  Graphene  Graphene Flagship  National Physical Laboratory  Olga Kazakova  pollution  Sensors 

Share |
PermalinkComments (0)
 

U.S. Army seeks a graphene-based composite EMI shielding material.

Posted By Terrance Barkan, Tuesday, January 7, 2020

OBJECTIVE: Develop a graphene-based composite EMI shielding material capable of replacing metal shielding in IC packages and printed circuit board components.

DESCRIPTION: As soldier electronics and their components operate at faster speeds, smaller size, and in closer confinements a substantial increase in Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI) can lead to system failures. This effort supports the FREEDOM ERP as it enables enhanced technologies to protect next generation of highly mobile RF communications for battlefield dominance in the broad bandwidth frequencies X-band (8-12 GHz) to the Ku-band (12-18 GHz). Metal EMI shields in IC packages and printed circuit board components have limitations in poor chemical resistance, oxidation in long term harsh environments, high density, flexibility, and form factor. Current strategies to obtain the desired EMI shields mainly rely on increasing the material's thickness to prolong the EM wave absorption routes or loading large amounts of fillers in order to increase its electrical conductivity [1]. However, these factors inevitably increase the production cost and limit scalability.

Click to read the rest of the SBIR project description and to reach the Technical Points of Contact. 

Tags:  Composite  Electronics  EMI Shield  Graphene  RF Shield  SBIR 

Share |
PermalinkComments (0)
 

Graphene Surprises Researchers Again: Strange ‘Melting’ Behavior

Posted By Graphene Council, Monday, January 6, 2020
Physicists from the Moscow Institute of Physics and Technology and the Institute for High Pressure Physics of the Russian Academy of Sciences have used computer modeling to refine the melting curve of graphite that has been studied for over 100 years, with inconsistent findings. They also found that graphene “melting” is in fact sublimation. The results of the study came out in the journal Carbon.

Graphite is a material widely used in various industries — for example in heat shields for spacecraft — so accurate data on its behavior at ultrahigh temperatures is of paramount importance. Graphite melting has been studied since the early 20th century. About 100 experiments have placed the graphite melting point at various temperatures between 3,000 and 7,000 kelvins. With a spread so large, it is unclear which number is true and can be considered the actual melting point of graphite. The values returned by different computer models are also at variance with each other.

A team of physicists from MIPT and HPPI RAS compared several computer models to try and find the matching predictions. Yuri Fomin and Vadim Brazhkin used two methods: classical molecular dynamics and ab initio molecular dynamics. The latter accounts for quantum mechanical effects, making it more accurate. The downside is that it only deals with interactions between a small number of atoms on short time scales. The researchers compared the obtained results with prior experimental and theoretical data.

Fomin and Brazhkin found the existing models to be highly inaccurate. But it turned out that comparing the results produced by different theoretical models and finding overlaps can provide an explanation for the experimental data.

As far back as 1960s, the graphite melting curve was predicted to have a maximum. Its existence points to complex liquid behavior, meaning that the structure of the liquid rapidly changes on heating or densification. The discovery of the maximum was heavily disputed, with a number of studies confirming and challenging it over and over. Fomin and Brazhkin’s results show that the liquid carbon structure undergoes changes above the melting curve of graphene. The maximum therefore has to exist.

The second part of the study is dedicated to studying the melting of graphene. No graphene melting experiments have been conducted. Previously, computer models predicted the melting point of graphene at 4,500 or 4,900 K. Two-dimensional carbon was therefore considered to have the highest melting point in the world.

“In our study, we observed a strange ‘melting’ behavior of graphene, which formed linear chains. We showed that what happens is it transitions from a solid directly into a gaseous state. This process is called sublimation,” commented Associate Professor Yuri Fomin of the Department of General Physics, MIPT. The findings enable a better understanding of phase transitions in low-dimensional materials, which are considered an important component of many technologies currently in development, in fields from electronics to medicine.

The researchers produced a more precise and unified description of how the graphite melting curve behaves, confirming a gradual structural transition in liquid carbon. Their calculations show that the melting temperature of graphene in an argon atmosphere is close to the melting temperature of graphite.

Tags:  2D materials  Graphene  Graphite  Moscow Institute of Physics and Technology  Nanotechnology  Vadim Brazhkin  Yuri Fomin 

Share |
PermalinkComments (0)
 

Graphene nanoarchitectures for diverse applications

Posted By Graphene Council, Wednesday, January 1, 2020

Graphene is an exceptional material with many potential applications. The on-surface synthesis of covalent architectures with atomic precision has emerged as one of the most promising methods for providing new functionalities to graphene.

Researchers from the ICN2 Atomic Manipulation and Spectroscopy Group and the DIPC discuss it in an article published in the Revista Española de Física.

This method allows creating a wide range of graphenic architectures from precursor molecules that are designed practically à la carte.

ICN2 researcher César Moreno and ICREA Prof. Aitor Mugarza (Leader of the Atomic Manipulation and Spectroscopy Group), together with 

Ikerbasque researcher Aran Garcia-Lekue (DIPC) have written an article for the Revista Española de Física discussing these topics.

They present the milestones achieved and the challenges and opportunities ahead regarding the top-down and the bottom-up approaches to build graphene nanoarchitectures. They focus on the potential applications of graphene nanostrips for nanoelectronics and photonics and of nanoporous graphene for advanced filtering.

Tags:  Aitor Mugarza  Aran Garcia-Lekue  César Moreno  Graphene  ICN2  nanoelectronics  photonics 

Share |
PermalinkComments (0)
 

Researcher’s break the geometric limitations of moiré pattern in graphene heterostructures

Posted By Graphene Council, Wednesday, January 1, 2020
Researchers at The University of Manchester have uncovered interesting phenomena when multiple two-dimensional materials are combined into van der Waals heterostructures (layered ‘sandwiches’ of different materials).

These heterostructures are sometimes compared to Lego bricks – where the individual blocks represent different atomically thin crystals, such as graphene, and stacked on top of each other to form new devices.

Published in Science Advances, the team focus on how the different crystals begin to alter one another’s fundamental properties when brought into such close proximity. Of particular interest is when two crystals closely match and a moiré pattern forms. This moiré pattern has been shown to affect a range of properties in an increasing list of 2D materials. However, typically the geometry of the moiré pattern places a restriction on the nature and size of the effect.

A moiré pattern is due to the mismatch and rotation between the layers of each materials which produces a geometric pattern similar to a kaleidoscope.

Our results push through the geometric limitation for these systems and therefore present new opportunities to see more of such science, as well as new avenues for applications.
Zihao Wang and Colin Woods, School of Natural Science

The team have broken this restriction by combining moiré patterns into composite ‘super-moiré’ in graphene both aligning to substrate and encapsulation hexagonal boron nitride. The researchers demonstrate the nature of these composite super-moiré lattices by showing band structure modifications in graphene in the low-energy regime. Furthermore, they suggest that the results could provide new directions for research and devices fabrication.

Zihao Wang and Colin Woods authors of the paper said: “In recent years moiré pattern have allowed the observation of many exciting physical phenomena, from new long-lived excitonic states, Hofstadter’s Butterfly, and superconductivity.

Our results push through the geometric limitation for these systems and therefore present new opportunities to see more of such science, as well as new avenues for applications.”

Tags:  2D materials  Colin Woods  Graphene  hexagonal boron nitride  University of Manchester  Zihao Wang 

Share |
PermalinkComments (0)
 

Researchers to develop a theory of transients in graphene

Posted By Graphene Council, Wednesday, January 1, 2020

The article "Equilibration of energies in a two-dimensional harmonic graphene lattice" published in the oldest scientific journal in the world Philosophical Transactions of the Royal Society considers the behavior of graphene in the moment of its transition from the state of thermal equilibrium and the process of returning to this state. The scientific report is conducted by Vitaly Kuzkin, the deputy director of Higher School of Theoretical mechanics and Research Educational Centre "Gazpromneft-Polytech" of Peter the Great St.Petersburg Polytechnic University (SPbPU) in collaboration with Igor Berinskii from the School of Mechanical Engineering, Tel Aviv University (Israel) in the field of materials science, solid mechanics and dynamics of mechanical systems.

"Our research group develops a theory that describes the transition to thermal equilibrium in crystals which are initially in a nonequilibrium state. It can be caused, for example, by high-speed laser exposure or the passage of shock waves. In this paper, we applied this theory to graphene", notes Vitaly Kuzkin. Usually, transients occur rather quickly and have a high frequency, but graphene turned out to be unique here - some transients in graphene have very low frequencies. "

The research results are important for investigation of heat transport and other nonequilibrium thermodynamic processes in graphene.

"Graphene is a very promising material. It has many useful properties like strength, stiffness, high heat and electrical conductivity. It can be used in flexible electronics, wearable devices, and in creation of composite materials," - explains Vitaly Kuzkin.

Tags:  Electronics  Graphene  Great St.Petersburg Polytechnic University  Igor Berinskii  Tel Aviv University  Vitaly Kuzkin 

Share |
PermalinkComments (0)
 

2D materials: arrangement of atoms measured in silicene

Posted By Graphene Council, Tuesday, December 31, 2019

Silicene consists of a single layer of silicon atoms. In contrast to the ultra-flat material graphene, which is made of carbon, silicene shows surface irregularities that influence its electronic properties. Now, physicists from the University of Basel have been able to precisely determine this corrugated structure. As they report in the journal PNAS, their method is also suitable for analyzing other two-dimensional materials.

Since the experimental production of graphene, two-dimensional materials have been at the heart of materials research. Similar to carbon, a single layer of honeycombed atoms can be made from silicon. This material, known as silicene, has an atomic roughness, in contrast to graphene, since some atoms are at a higher level than others.

Silicene not completely flat
Now, the research team, led by Professor Ernst Meyer of the Department of Physics and the Swiss Nanoscience Institute of the University of Basel, has succeeded in quantitatively representing these tiny height differences and detecting the different arrangement of atoms moving in a range of less than one angstrom – that is, less than a 10-millionth of a millimeter.

“We use low-temperature atomic force microscopy with a carbon monoxide tip,” explains Dr. Rémy Pawlak, who played a leading role in the experiments. Force spectroscopy allows the quantitative determination of forces between the sample and the tip. Thus, the height in relation to the surface can be detected and individual atoms can be chemically identified. The measurements show excellent agreement with simulations carried out by partners at the Instituto de Ciencia de Materiales de Madrid (ICMM).

Different electronic properties
This unevenness, known as buckling, influences the electronic properties of the material. Unlike graphene, which is known to be an excellent conductor, on a silver surface silicene behaves more like a semiconductor. “In silicene, the perfect honeycomb structure is disrupted. This is not necessarily a disadvantage, as it could lead to the emergence of interesting quantum phenomena, such as the quantum spin hall effect,” says Meyer.

The method developed by the researchers in Basel offers new insights into the world of two-dimensional materials and the relationship between structure and electronic properties.

Tags:  2D materials  Ernst Meyer  Graphene  Rémy Pawlak  University of Basel 

Share |
PermalinkComments (0)
 

Saving Moore’s Law

Posted By Graphene Council, Tuesday, December 31, 2019
It’s a well-known observation: The number of transistors on a microchip will double roughly every two years. And, thanks to advances in miniaturization and performance, this axiom, known as Moore’s Law, has held true since 1965, when Intel co-founder Gordon Moore first made that statement based on emerging trends in chip manufacturing at Intel. 

However, integrated circuits are hitting hard physical limits that are rendering Moore’s Law obsolete — elements on a dense integrated circuit (IC) can get only so small and so tightly packed together before they begin to interfere with each other and otherwise lose their functionality.

“Apart from fundamental physical limits to the scaling of transistor feature sizes below a few nanometers, there are significant challenges in terms of reducing power dissipation, as well as justifying the incurred cost of IC fabrication,” said Kaustav Banerjee, a professor of electrical and computer engineering at UC Santa Barbara. As a result, the very devices that we rely on for their steadily improving performance and versatility — computers, smartphones, internet-enabled gadgets — would also hit a limit, he said.

But according to Banerjee, one of world’s leading scientific minds in the field of nanoelectronics, there is a way to maintain Moore’s Law indefinitely, by taking advantage of relatively new and promising two-dimensional (2D) materials and combining them with monolithic 3D (M3D) integration practices to create ultra-compact, yet high-performing electronic chips that could overcome the challenges that face conventional integrated circuits. While Banerjee first disclosed this idea in a visionary article back in 2014, more detailed research evaluating this technology from his Nanoelectronics Research Lab was recently published in the IEEE Journal of the Electron Devices Society.

“Two-dimensional materials can be stable in their monolayer form with atomic scale thickness – 0.5 nanometer or 5 Angstroms for graphene (a conductor) and hexagonal-boron-nitride (an insulator), and ~6.5 Angstroms for 2D transition metal dichalcogenides (semiconductors) such as molybdenum-disulphide (MoS2) or tungsten-disulphide/diselenide (WS2/WSe2).” Banerjee said. “In addition, due to their layered nature, they offer pristine surfaces relatively free of defects and are excellent conductors of heat in the in-plane direction. All these properties, along with the possibility to directly synthesize these materials on top of prefabricated devices, offer unprecedented advantages over conventional 3D ICs that are already in the market or M3D integration with conventional electronic materials.”

The Benefits of Thinness 

According to the Banerjee Group’s study, there’s a limit to how thin conventional semiconductor materials can get before their desirable electronic properties begin to fade. 

“Thickness scaling of common semiconductor materials, such as Si, becomes challenging below a few nanometers due to rapid degradation of their mobility caused by the increase in electron scatterings from surface roughness,” Banerjee said. “In fact, below ~1 nm, conventional materials like Si or Ge may not be thermodynamically stable.”

On the other hand, atomically thin and stable 2D materials, such as graphene, hexagonal boron nitride (h-BN), and transitional metal dichalcogenides (MoS2, WS2, WSe2, etc) are highly space-efficient, thickness-wise. Moreover, due to their layered nature and pristine interfaces, the 2D semiconductors exhibit reasonably high mobilities and immunity against surface defects, according to the paper. In addition, 2D materials tend to be a lot more flexible than their conventional counterparts, which make them ideal for state-of-the-art electronics applications, such as flexible displays.  Stacked 2D materials, in contrast to their stacked 3D counterparts, meanwhile, can also minimize the inter-tier signal delays, thermal resistance, and reduce potential overheating.

By selecting certain 2D materials and stacking them, according to the researchers, not only does the monolithic 3D conserve precious space on the chip, but also allows for configuration based on the combined electronic properties of the materials.

For example, owing to the atomically-thin vertical dimensions of 2D materials, and carefully-designed inter-tier electrostatics with graphene shielding layer that also benefits from enhanced heat dissipation, aggressive scaling of tier thickness down to sub-μm can be achieved,” Banerjee said. “Such scaling allows over 10-folds higher integration density with respect to conventional 3D integration, and over 150% greater integration density with respect to conventional M3D integration, with plenty of room for further improvements.” 

“Thus, 2D materials can help realize the ultimate density scaling of integrated electronics — both laterally and vertically — which can usher an unprecedented era of innovation and economic growth for the worldwide semiconductor industry,” he added.

Manufacturing Outlook

As with many innovations with potential to become mainstream technologies, there are challenges to consider to pave the way toward their mass manufacturing. For monolithic 3D devices, the challenges are to be able to fabricate these components at relatively low temperatures (lower than 500 degrees Celsius) to avoid degradations and damages to prefabricated devices located in the lower tiers; electromagnetic interference; and heat dissipation.

Last year, Banerjee’s group demonstrated a CMOS compatible graphene synthesis method that essentially addressed the low-temperature and transfer-free synthesis challenge for graphene. Similar efforts are underway in his laboratory to synthesize other 2D materials directly on wafers at low temperatures.

“Additionally, careful design is needed to electrically shield the generated electromagnetic waves from affecting the operations of devices on adjacent or nearby tiers,” said Junkai Jiang, the lead author of the article and recent recipient of a doctoral degree in electrical and computer engineering from Banerjee’s laboratory. The researchers noted that by using a thin graphene shielding layer between tiers (preferably doped to enhance electromagnetic screening effect), interference can be prevented even as the vertical layers are scaled down. 

In terms of heat dissipation, the thinness of the material itself is conducive to allowing the heat from densely packed stacked components to dissipate efficiently. Kamyar Parto, a co-author of the study and a member of Banerjee’s lab, remarked that “the 2D materials have much higher in-plane thermal conductivity compared to thinned-down conventional materials like silicon, which helps fast lateral heat transport, thereby reducing the risks of any hot-spot formation.”  

“Ultimately, we envision heterogeneously integrated devices and technologies enabled by 2D materials to realize the world’s tallest and densest ‘chip-cities’ with unprecedented performance, storage capacity, and energy-efficiency,” he added.

Tags:  2D materials  Electronics  Graphene  Hexagonal boron nitride  Intel  Junkai Jiang  Kamyar Parto  Kaustav Banerjee  nanoelectronics  Semiconductor 

Share |
PermalinkComments (0)
 

High-performance anode for all-solid-state Li batteries is made of Si nanoparticles

Posted By Graphene Council, Tuesday, December 31, 2019
A new study led by NIMS researchers reveals that, in solid electrolytes, a Si anode composed only of commercial Si nanoparticles prepared by spray deposition -- the method is a cost-effective, atmospheric technique -- exhibits excellent electrode performance, which has previously been observed only for film electrodes prepared by evaporation processes. This new result therefore suggests that a low-cost and large-scale production of high-capacity anodes for use in all-solid-state Li batteries is possible.

Si has a theoretical capacity of ~4,200 mAh/g, which is approximately 11 times higher than that of the graphite commonly used as the anode-active material in commercial Li-ion batteries. Replacing the traditional graphite by Si can extend significantly the driving range per charge of electric vehicles. However, its huge volume change (~300%) during lithiation and delithiation -- charge and discharge -- hinders its practical application in the batteries. In conventional liquid electrolytes, the use of polymeric binders is necessary to hold the active material particles in the electrode together and maintain their adhesion to the surface of metal current collectors. The repeated huge volume change of Si causes the particle isolation and thus leads to losing the active material, which results in a continuous capacity loss. In solid-state cells, the active material is placed between two solid components -- solid electrolyte separator layer and metal current collector --, which enables avoidance of tackling the problem -- electrical isolation of the active material --. In fact, as reported previously by the team of NIMS researchers, the sputter-deposited pure Si films delivering practical areal capacities exceeding 2.2 mAh/cm2 exhibit excellent cycling stability and high-rate discharge capabilities in solid electrolytes. Nonetheless, cost-effective and industrially scalable synthesis of the anode for all-solid-state Li batteries remains a great challenge.

The team of NIMS researchers has taken another synthesis approach toward develop the high-performance anode for all-solid-state Li batteries with commercial Si nanoparticles, and found a unique phenomenon to the nanoparticles in the solid-state cell: upon lithiation, they undergo volume expansion, structural compaction, and appreciable coalescence in the confined space between the solid electrolyte separator layer and metal current collector to form a continuous film similar to that prepared by the evaporation process. The anode composed of nanoparticles prepared by spray deposition therefore exhibits excellent electrode performance, which has previously been observed only for sputter-deposited film electrodes. The spray deposition method is a cost-effective, atmospheric technique that can be used for large-scale production. Hence, the findings will pave the way for low-cost and large-scale production of high-capacity anodes for use in all-solid-state Li batteries.

Continuing efforts by the team of NIMS researchers to improve the cyclability in the anode having the increased areal mass loading of nanoparticles are in progress to meet the requirements of electric vehicles.

Tags:  Electric Vehicle  Graphene  Graphite  Li-ion batteries  nanoparticles  National Institute for Materials Science 

Share |
PermalinkComments (0)
 

GRATOMIC RECEIVES FIRST TWO PURCHASE ORDERS FOR PRE-GRAPHENE GRAPHITE FROM TODAQ

Posted By Graphene Council, Saturday, December 21, 2019
Gratomic Inc a vertically integrated graphite to graphenes, advanced materials development company announces it has received its first two purchase orders for a total of USD 6 Million following a previously announced supply agreement on October 17, 2019 (https://gratomic.ca/gratomic-signs-deal-to-supply-graphite-to-todaq/) for an aggregate of USD $25,000,000 of graphite in an all-digital-asset deal from TODAQ STAR Program Phase 1 Corp, a subsidiary of TODAQ Holdings. The purchase orders are each for 600 tonnes of graphite valued at USD $6,000,000 solely payable in TDN at a price of USD$0.10 per TDN for an aggregate of TDN 60,000,000 that is to be delivered within 90 days.

Subsequent to the success of the initial delivery, TODAQ will place one additional order of 600 tonnes of graphite with 30 day intervals bringing the total to 1800 tonnes of graphite for USD $9,000,000 in consideration for the issuance of an aggregate of 90 million TDN. Thereafter, TODAQ will place orders on a monthly basis with the value of USD $484,848.49 based on both the purchase price for graphite and the exchange between USD and TDN applicable at the time over a period of 39 months.

The agreement marks the first steps towards a significant journey for Sovereignty Tech pioneer TODAQ, with a strategic intention towards both building its TDN rewards program and allowing cryptographic ownership of commodities so that all business, people and markets can transact quickly with security and long-term stability. Furthermore, the graphite will sit in the TDN reserve backstop as part of a diverse set of commodities to underpin the true value of deployed TDN with physical substance and utility.

No mineral resources, let alone mineral reserves demonstrating economic viability and technical feasibility, have been delineated on the Aukam Property. The Company is not in a position to demonstrate or disclose any capital and/or operating costs that may be associated with satisfying the terms of the Todaq Supply Agreement.

Gratomic wishes to emphasize that Supply Agreement is conditional on Gratomic being able to bring the Aukam project into a production phase, and for any graphite being produced to meet certain technical and mineralization requirements.

Gratomic continues to move its business towards production and as part of its business plan, expects to obtain a National Instrument 43-101 Standards of Disclosure for Mineral Projects technical report to help it ascertain the economics of Aukam. Presently the Company uses its existing pilot processing facility to produce certain amounts of graphite concentrate from accumulated surface graphite.

Risk Factors

The Company advises that it has not based its production decision on even the existence of mineral resources let alone on a feasibility study of mineral reserves, demonstrating economic and technical viability, and, as a result, there may be an increased uncertainty of achieving any particular level of recovery of minerals or the cost of such recovery, including increased risks associated with developing a commercially mineable deposit.

The Supply Agreement provides that if Gratomic is unable to deliver graphite in accordance with the orders from Todaq, Todaq has the right to refuse to take any subsequent attempt to fulfil the order, terminate the agreement immediately, obtain substitute product from another supplier and recover from the Company any costs and expenses incurred in obtaining such substitute product or suing for damages under the contract.

Historically, such projects have a much higher risk of economic and technical failure. There is no guarantee that production will begin as anticipated or at all or that anticipated production costs will be achieved.

Failure to commence production would have a material adverse impact on the Company's ability to generate revenue and cash flow to fund operations. Failure to achieve the anticipated production costs would have a material adverse impact on the Company's cash flow and future profitability.

Steve Gray, P.Geo. has reviewed, prepared and approved the scientific and technical information in this press release and is Gratomic Inc's "Qualified Person" as defined by National Instrument 43-101 - Standards of Disclosure for Mineral Projects.

Tags:  Graphene  Graphite  Gratomic  P.Geo  Steve Gray  TODAQ 

Share |
PermalinkComments (0)
 
Page 34 of 63
 |<   <<   <  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  37  |  38  |  39  >   >>   >|