Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Talga Completes 2nd Commercial Scale Graphene Coating Trial

Posted By Graphene Council, Wednesday, January 22, 2020
Talga Resources Ltd announced the commencement of a new large scale commercial trial of its Talcoat graphene additive for maritime coatings.

At the core of the Talcoat product is Talga’s new patent-pending graphene functionalization technology in the form of an on-site dispersible powder that can successfully add graphene’s exceptional strength into paint and coatings.

Supported by the same shipowner, Talga has provided its next-generation graphene additive to enhance a primer coating successfully applied over a sizeable area of a second large container ship.

Unlike the first trial, the Talcoat product and the 2-part epoxy-based commercial coating system were supplied separately and mixed on-site by the paint applicators before spray application to the vessel during dry-docking.

The application of the coating was successful in meeting all conditions and standards required for ships of this size, confirming the potential of the Talcoat product as a ready-mix component for on-site incorporation by coating companies or paint applicators alike.

To further test the versatility and compatibility of the Talcoat additive, the trial used a commercial coating system from a world-leading coating supplier different from that used in the first trial.

The ocean-going cargo vessel, of similar size to the initial container ship being approximately 225m long and weighing 33,000 tons, has re-entered service at sea where over the next 12-18 months the test area will be evaluated on the performance boost delivered to the coating system.

“We continue taking graphene out of the lab and into the real world with these large scale coating trials underway on cargo ships," Talga Managing Director Mark Thompson said. "This application joins the other large scale clean technology product verticals we have been developing for several years such as graphene-enhanced concrete, plastics and packaging products.” 

Tags:  Coatings  Graphene  graphene additives  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 

New Chair in Materials Physics and Innovation Policy

Posted By Graphene Council, Tuesday, January 21, 2020
The University of Manchester has appointed Richard Jones as a new Chair in Materials Physics and Innovation Policy, joining Manchester from the University of Sheffield.

Richard is an experimental soft matter physicist. His first degree and PhD in Physics both come from Cambridge University. Following postdoctoral work at Cornell University, USA, he was a lecturer at the University of Cambridge’s Cavendish Laboratory, before moving to Sheffield in 1998. In 2006 he was elected a Fellow of the Royal Society, in recognition of his work in the field of polymers and biopolymers at surfaces and interfaces, and in 2009 he won the Tabor Medal of the UK’s Institute of Physics for his contributions to nanoscience.

He is the author of more than 190 research papers, and three books, Polymers at Surfaces and Interfaces (with Randal Richards, CUP 1999), Soft Condensed Matter, (OUP 2002), and Soft Machines: Nanotechnology and Life (OUP 2004).

He was Pro-Vice-Chancellor for Research and Innovation at Sheffield from 2009 to 2016, was a member of EPSRC Council from 2013 – 2018, and chaired Research England’s Technical Advisory Group for the Knowledge Exchange Framework. He has written extensively about science and innovation policy, and was a member of the Sheffield/Manchester Industrial Strategy Commission.

Richard will join the Faculty of Science and Engineering and contribute to the pioneering work in advanced materials that is currently being carried out at Manchester. The University is home to several major national materials research centres including the National Graphene Institute, the Graphene Engineering Innovation Centre and the soon-to-open Henry Royce Institute for advanced materials research and innovation.

Richard is a greatly respected materials physicist who has also made very significant contributions to major national and international activities and to the areas of regional economic growth, productivity and prosperity. I am delighted that he will be joining us, President and Vice-Chancellor, Professor Dame Nancy Rothwell.

Richard said: “Manchester is one of the world’s great universities, whose research in many fields, including advanced materials, has international reach. In addition to its national importance, it plays a central role in driving economic growth and prosperity in the city and across the North of England. This is an exciting time to join The University of Manchester and I’m looking forward to being part of this important work.”

Professor Dame Nancy Rothwell, President and Vice-Chancellor of The University of Manchester said: “Richard is a greatly respected materials physicist who has also made very significant contributions to major national and international activities and to the areas of regional economic growth, productivity and prosperity. I am delighted that he will be joining us.”

Professor Martin Schröder, Vice President and Dean of the University’s Faculty of Science and Engineering, added: “I am thrilled and delighted to welcome Professor Richard Jones to the University.

“Richard is a renowned experimental physicist with a focus on materials science, specialising in the properties at surfaces and interfaces. Richard has wider interests in the social and economic consequences of nanotechnology and has contributed significantly to innovation within the higher education sector. I very much look forward to working with Richard and developing and delivering new initiatives across science and engineering.”

Tags:  Dame Nancy Rothwell  Graphene  Martin Schröder  Richard Jones  University of Manchester 

Share |
PermalinkComments (0)
 

Adding graphene to amorphous carbon random-access memories could lead to smaller memory devices that consume less power

Posted By Graphene Council, Tuesday, January 21, 2020
Researchers at Graphene Flagship partner the Cambridge Graphene Centre, University of Cambridge, have developed a new type of resistive memory that can be scaled down beyond current limitations. They also collaborated with colleagues at Soochow University to discuss the state-of-the-art technology and evaluate the future of resistive memories based on graphene and related materials (GRMs). Furthermore, Graphene Flagship partners at CNRS, France, and CSIC and ICREA, Spain, along with SAC member Luigi Colombo, analysed the properties and device structures required for practical GRM-based memory devices to reach their potential.

Data storage in computers comes in two distinct flavours: volatile and non-volatile memory, and both are essential in modern electronic devices. Volatile memory is used in random access memory (RAM) and computer processors to store temporary data, whereas non-volatile memory is used in hard drives and flash drives for long-term data storage.

Over the past 25 years, this technology has advanced tremendously – with Moore's Law predicting a near-doubling in the number of transistors on a microchip every two years, while the cost of computers roughly halves. For most of the past few decades, this has resulted in exponential growth in computer storage space and a corresponding reduction in size. But Moore's Law is dying, and we are rapidly approaching the physical limits of data storage. One of the reasons for this is that when the size of memory devices approaches the nanometer scale, leakage currents in capacitors lead to severe data losses.

By integrating a layer of graphene into resistive RAM devices made with tetrahedral amorphous carbon, Graphene Flagship scientists have now developed a new type of memory that can be scaled down beyond previous size limitations. The new memory devices could lead to better-performing computers and personal electronics with much larger storage capacities. In the devices, tetrahedral amorphous carbon, which has high electrical resistance, is sandwiched between two electrodes. When an electric field is applied between the electrodes, a conductive path forms in the carbon layer, connecting the two electrodes and forming a low resistance state. The high- and low-resistance states can be used to encode data in the form of binary 1s and 0s.

In their paper, published in the journal 2D Materials, Graphene Flagship partner University of Cambridge showed that by adding a graphene layer between an amorphous carbon layer and one of the electrodes, they can significantly improve the performance of the memory and suppress the leakage current that leads to data loss. "Leakage currents become more dominant as device sizes get smaller, and it's important that the two memory states – the high- and low-resistance states, or the ones and zeroes – are not too close together," explains Anna Ott from the Cambridge Graphene Centre. "Adding a graphene layer improves this ratio by an order of magnitude and suppresses the leakage current, showing that amorphous carbon-based memories are suitable for achieving the smallest possible memory size."

In their Advanced Electronic Materials paper, the Graphene Flagship researchers conclude that the main challenges facing scientists developing new, state-of-the-art resistive RAM devices, are creating durable devices that can run for over 109 switching cycles and achieving data retention times of over 10 years. The researchers find that augmenting resistive RAM with GRMs results in highly stable devices with very promising performance. They show that GRMs are already fit for some non-volatile memory requirements, and that they can be a promising alternative to currently used technologies. 

In the Advanced Materials publication, the Graphene Flagship researchers state that for these technologies to be realized, scientists must focus on two main areas of progress: high-speed and high-capacity non-volatile memories and low-cost, flexible and transparent storage devices for wearable electronics. "You normally need one to two decades of intense research before an exciting proof-of-concept like this can turn into a game-changing technology and hit the market," comments Samorì from Graphene Flagship Partner University of Strasbourg. He emphasizes that this is feasible, but sustainable and continuous funding support will be needed before it can become a reality.

Indeed, Ott explains that graphene-enabled memory devices compare well to state-of-the-art: in terms of speed, they are faster than traditional flash memories, comparable to the dynamic RAM common in today's computer components, and slower than static RAM, which Ott says is expected. "Carbon-based resistive RAM provides much better scaling possibilities compared to static and dynamic RAM and flash memories. We can also add oxygen to get oxygen-amorphous carbon, which improves the endurance – how many times the device can be switched between the two resistance states – to be comparable to flash memories," she continues.

Daniel Neumaier, leader of the Graphene Flagship's Electronic Devices Work Package, comments: "These papers are highly valuable for scientists trying to create smaller and smaller resistive RAM technology. Data loss due to leakage currents is one of the main problems in nanoscale-sized memory devices, and the work demonstrates that incorporating tetrahedral amorphous carbon reduces this problem."

Further collaborations could lead to graphene-integrated memories hitting the market. However, the integration of GRMs into memory manufacturing processes may be a challenge. "This will be one of the main issues to overcome in order to bring graphene from laboratories to factories," concludes Ott.

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel, adds: "These publications show that graphene and related materials are finding their way into new applications of resistive memories. These are at the centre of an ever-increasing research effort and, yet again, the Graphene Flagship and its collaborators are at the forefront of not just novel research, but also of the outlining of future directions."

Tags:  2D materials  Andrea C. Ferrari  Anna Ott  Daniel Neumaier  Graphene  Graphene Flagship  University of Cambridge 

Share |
PermalinkComments (0)
 

Chemists have managed to stabilize the 'capricious' phosphorus

Posted By Graphene Council, Tuesday, January 21, 2020
An international team of Russian, Swedish and Ukrainian scientists has identified an effective strategy to improve the stability of two-dimensional black phosphorus, which is a promising material for use in optoelectronics.

The most effective mechanism of fluorination has been revealed. In addition to increased stability compared to previously proposed structures, the materials predicted by the researchers showed high antioxidative stability. The main results of the work have been presented in The Journal of Physical Chemistry Letters.

Black phosphorus is obtained from white phosphorus under conditions of high pressure and elevated temperature. The material has a layered structure and resembles graphite in appearance and properties. However, unlike graphite, it is a good semiconductor.

"Phosphorene is a monolayer of black phosphorus with interesting physical properties (high anisotropic electrical and thermal conductivity, flexible band gap variability depending on the number of layers), which makes it a promising material for use in various fields of optoelectronics (transistors, inverters, flexible electronics, solar panels). Unfortunately, one of its main problems is instability in the environment. Unlike its volumetric analogue, which is almost immune to external conditions, phosphorene quickly begins to attach oxygen from the air and degrades within a few hours. As one of the strategies for improving the stability of phosphorene, mechanism of fluorination was proposed. Over the past five years, scientists have proposed several theoretically possible options for such a "coupling". An experiment was conducted that showed a significant increase in the stability of phosphorus in ambient conditions after fluorination. However, the features of the obtained material structure remained unexplained.

Using various theoretical approaches, my colleagues and I showed that the previously proposed structures of "stabilized" phosphorus were actually unstable. It is known that phosphorus is able to form compounds with 3 or 5 fluorine atoms. Our calculations also confirmed that the characteristic coordination of the phosphorus atom in the PF system is 3 or 5. By sequential addition of atoms, it was possible to identify the most effective and really working mechanism by which fluorine atoms should attach to the surface of phosphorene. Thus, we have determined the type of structures that are likely to have been obtained by our predecessors in the above-mentioned experiment," -- said Artem Kuklin, a research fellow of SibFU.

Scientists note that the materials formed by the predicted mechanism are really stable and have increased antioxidant ability (that is, they are not quickly degradable) and their electronic properties, which do not differ much from the properties of pure phosphorus, provide the possibility of their practical application in optoelectronic devices, i.e. transistors, solar panels, flexible electronics, LEDs, photosensors, biomedical devices, optical devices for storing and transmitting information, etc.

Tags:  Artem Kuklin  Graphene  optoelectronics  photonics  Semiconductor  Siberian Federal University 

Share |
PermalinkComments (0)
 

Versarien plc US graphene operations update

Posted By Graphene Council, Tuesday, January 21, 2020
Versarien plc is pleased to provide an update on its US graphene operations. The Company continues to make progress with current and potential partners in the US.  As announced on 27 June 2019, the Company appointed Brian Berney as President of North American Operations at Versarien Graphene Inc., reporting to Neill Ricketts, CEO of Versarien.  Since then the Company has continued to enter into confidentiality agreements with potential partners to examine collaborations and develop trials in the region, including in particular, with a global tyre manufacturer.

Versarien has strengthened its US profile by attending two trade missions in Q4 2019, supported by the UK government.  In October 2019, Versarien attended the UK Supplier Showcase in Wichita, in conjunction with Spirit AeroSystems, and in December 2019 the Company was part of Innovate UK's Global Business Innovation Programme to Boston, which focused on graphene applications and technology in the electronics, composites and energy sectors.

Versarien Graphene, Inc. has a serviced office location.  Brian Berney, who is the only full-time employee in the US, is supported by the UK Company team, including from within the Company's laboratory facilities at the Graphene Engineering Innovation Centre in the UK. The Company also has access to third party laboratory facilities in Texas, which are utilised on a flexible basis and only as required.  This strategy is in line with the Group's approach to keep cost to a minimum and utilise customer's R&D facilities, where possible, as well as the Company's R&D expertise and available facilities in the UK.

Tags:  Brian Berney  composites  Electronics  Graphene  Graphene Engineering Innovation Centre  Neill Ricketts  Versarien  Versarien Graphene 

Share |
PermalinkComments (0)
 

Thomas Swan awarded funding from Innovate UK to further improve its graphene products

Posted By Graphene Council, Tuesday, January 21, 2020
Thomas Swan & Co. Ltd., one of the UK’s leading independent chemical manufacturers, today announced that it has been awarded funding from Innovate UK, under the Analysis for Innovators programme. The funding will support a project to develop a QC method for determining the aspect ratio for graphene nanoplatelets (GNP), working with the National Physical Laboratory (NPL), the UK’s National Metrology Institute and a World-renowned centre of excellence.

Thomas Swan is a global leader in the manufacture of carbon nanomaterials and 2D materials through patented high-shear liquid phase exfoliation technology. The ability to produce different variants and forms of graphene is of huge significance to Thomas Swan. In order to achieve this ambition, high aspect ratio graphene materials must be produced.

The grant aims to enhance Thomas Swan’s ability to measure the aspect ratio of its graphene products, which is currently done using their suite of SEM, PSD, Raman and other methods. The programme will focus on the Elicarb® GNP product line currently offered by Thomas Swan.

The project will allow Thomas Swan to become even more competitive in the field, by offering its customers a quick and cost-effective tool to improve the level of characterisation of its GNP products and therefore guaranteeing a higher quality and consistency of its materials. Furthermore, this will increase the number of options available to customers, resulting in the delivery of more refined products, allowing Thomas Swan to compete more effectively in areas of UK-focused innovation such as the nanocomposites, lubricants and battery materials application areas.

Michael Edwards, Commercial Director – Advanced Materials at Thomas Swan said, “being able to continue our close collaboration with the NPL means that we can maintain our high standard of product characterisation, integrity and quality which is paramount in the volume materials manufacturing business”.

Keith Paton, Senior Research Scientist at NPL said “this is a fantastic opportunity to apply the measurement capability developed at NPL to support UK industry to improve productivity and product quality. We are looking forward to working with Thomas Swan to deliver improved quality control measurement techniques to monitor the graphene nanoplatelet aspect ratio”

Tags:  2D materials  Graphene  Innovate UK  Keith Paton  Michael Edwards  nanocomposites  nanomaterials  National Physical Laboratory  Thomas Swan 

Share |
PermalinkComments (0)
 

XG Graphene-Enhanced Field Hockey Sticks from Grays

Posted By Graphene Council, Tuesday, January 21, 2020

XG Sciences, Inc. a market leader in the design and manufacture of graphene nanoplatelets and advanced materials containing graphene nanoplatelets, announces the innovative use of XG Sciences’ graphene in Grays’ field hockey sticks. For over 160 years Grays of Cambridge, Ltd. has been on the forefront of creating superior sports equipment and has continued that path by strategically incorporating graphene into their GR hockey sticks to elevate player performance.

First isolated and characterized in 2004, graphene is a single layer of carbon atoms configured in an atomic-scale honeycomb lattice. Among many noted properties, monolayer graphene is harder than diamonds, lighter than steel but significantly stronger, and conducts electricity better than copper. Graphene nanoplatelets are particles consisting of multiple layers of graphene. Graphene nanoplatelets have unique capabilities for energy storage, thermal conductivity, electrical conductivity, barrier properties, lubricity and the ability to impart physical property improvements when incorporated into plastics, metals or other matrices.
 
“Adding graphene into our durable GX composite matrix enabled us to forge the GR Collection to deliver exceptional feel, power and playability,” said James Bunday, Range Development Lead, Grays Hockey. “The feedback we received after launching the GR Collection was tremendous because the graphene-enhanced technology strengthens the hockey sticks and helps players reach great all-around performance.”

When it comes to field hockey, the most important piece of equipment is a player’s stick. Athletes need their stick to be light weight while running, provide superior ball control when performing specialized shots and have great power to deliver the game winning goal. With a graphene-enhanced field hockey stick two unique things happen, energy is more efficiently transferred, and more shock is absorbed giving the player a better feel and response.
 
“XG Sciences is helping to redefine the sporting goods industry by boosting player performance with graphene-enhanced equipment,” says Philip Rose, Chief Executive Officer, XG Sciences. “In the sporting goods space, XG formulations have also been in full production in Callaway’s graphene-enhanced golf balls improving player performance by delivering better ball speed, control and distance.”

Tags:  Graphene  James Bunday  Philip Rose  sporting goods  XG Sciences 

Share |
PermalinkComments (0)
 

Global Graphene Group Named R&D 100 Award Finalist

Posted By Graphene Council, Friday, January 17, 2020
Global Graphene Group (G3) was honored recently by R&D World, naming G3’sgraphene-protected lithium metal anode for rechargeable metal batteries solution (HELiX™) a finalist for the 2019 R&D100 Award. The R&D 100 Awards recognize the top 100 most technologically significant new products of the year. 

HELiX is a single-layer graphene-protected lithium metal technology making high-energy rechargeable metal batteries viable. It allows extremely low anode usage (anode/cathode ratio ≤ 10%), creating an energy density over 350 Wh/kg and 1,000 Wh/L, which yields a 60-80% improvement over current lithium-ion batteries. This offers unprecedented opportunities for advanced portable devices/electric vehicles.

HELiX is a readily available, drop-in, graphene-enabled anode solution for all types of high-energy, lithium metal batteries (e.g. advanced Li-ion, all solid-state batteries, Li-S, Li-Se, and Li-air cells). It adds immediate value to any rechargeable battery, including, but not limited to power drones, renewable energy storage systems, aerospace applications, unmanned vehicles, and electric vehicles (EVs). Additionally, due to its performance, batteries can be reduced in size by 30-40% while still providing the required energy. This provides room for other components or allows for significant reductions in size and weight.  The most promising opportunity for HELiX graphene-enabled anode solutions is inEV batteries, where it can replace incumbent (graphite) technology today and drive an accelerated adoption of EVs due to improved cost and performance. 

“Rechargeable lithium metal batteries for next-generation portable devices and EVs must meet several challenging requirements: safety, high energy density, long cycle life, and low cost.This is the end-goal laid out by nearly every EV manufacturer for the foreseeable future,” said Dr. Aruna Zhamu, VP of New Product / Process Development at G3. 

“Global Graphene Group has developed an enabling anode-protecting technology that is essential to successful operation of safe, high-energy and long-cycle-life lithium metal batteries working with liquid, quasi-solid, or solid electrolytes,” continued Dr. Zhamu.“This HELiX product has overcome the long-standing issues thus far impeding successful commercialization of all the rechargeable batteries that make use of lithium metal as the anode material. OurHELiX technology is available and offers a drop-in, scalable, facile, cost reducing improvement over current solutions. It lowers the battery cost to less than$100 US$/kWh.”

G3 developed and produces the HELiX solution in its Dayton, Ohio, facilities. G3 was named an R&D 100 winner in 2018 for its graphene-enabled silicon anode (GCATM).

Tags:  Aruna Zhamu  Batteries  electric vehicle  Energy Storage  Global Graphene Group  Graphene  Li-Ion batteries  Lithium 

Share |
PermalinkComments (0)
 

Advanced Material Development announces £1.5M funding round and Incorporates in the U.S.

Posted By Graphene Council, Wednesday, January 15, 2020
Advanced Material Development Ltd is pleased to announce it has raised in excess of £1.5M in new equity funding to further extend its nano-material research and development operations and support its government and industry partnerships in Europe and the US.

CEO John Lee said: “We are delighted to have received such strong support from both existing and new shareholders in this latest round of funding. This enables the company to extend a number of our existing projects and expedite those moving towards application and commercial outcomes with a rapidly expanding number of partner engagements.”

Advanced Material Development (AMD) is delighted to announce it has now incorporated in the United States and established an office presence in the Washington metropolitan area.

AMD CEO John Lee says “This is a key development in the AMD business plan. The U.S. effort has been the key thrust for our business in the last year and our success to date is notable. Our partners have urged us to establish a local presence and we now see this to be just the start of a huge growth opportunity for the company”

Tags:  Advanced Material Development  Graphene  John Lee  nanomaterials 

Share |
PermalinkComments (0)
 

'Superdiamond' carbon-boron cages can trap and tap into different properties

Posted By Graphene Council, Monday, January 13, 2020
A long-sought-after class of "superdiamond" carbon-based materials with tunable mechanical and electronic properties was predicted and synthesized by Carnegie's Li Zhu and Timothy Strobel. Their work is published by Science Advances.

Carbon is the fourth-most-abundant element in the universe and is fundamental to life as we know it. It is unrivaled in its ability to form stable structures, both alone and with other elements.

A material's properties are determined by how its atoms are bonded and the structural arrangements that these bonds create. For carbon-based materials, the type of bonding makes the difference between the hardness of diamond, which has three-dimensional "sp3" bonds, and the softness of graphite, which has two-dimensional "sp2" bonds, for example.

Despite the enormous diversity of carbon compounds, only a handful of three-dimensionally, sp3-bonded carbon-based materials are known, including diamond. The three-dimensional bonding structure makes these materials very attractive for many practical applications due to a range of properties including strength, hardness, and thermal conductivity.

"Aside from diamond and some of its analogs that incorporate additional elements, almost no other extended sp3 carbon materials have been created, despite numerous predictions of potentially synthesizable structures with this kind of bonding," Strobel explained. "Following a chemical principle that indicates adding boron into the structure will enhance its stability, we examined another 3D-bonded class of carbon materials called clathrates, which have a lattice structure of cages that trap other types of atoms or molecules."

Clathrates comprised of other elements and molecules are common and have been synthesized or found in nature. However, carbon-based clathrates have not been synthesized until now, despite long-standing predictions of their existence. Researchers attempted to create them for more than 50 years.

Strobel, Zhu, and their team -- Carnegie's Gustav M. Borstad, Hanyu Liu, Piotr A. Guńka, Michael Guerette, Juli-Anna Dolyniuk, Yue Meng, and Ronald Cohen, as well as Eran Greenberg and Vitali Prakapenka from the University of Chicago and Brian L. Chaloux and Albert Epshteyn from the U.S. Naval Research Laboratory -- approached the problem through a combined computational and experimental approach.

"We used advanced structure searching tools to predict the first thermodynamically stable carbon-based clathrate and then synthesized the clathrate structure, which is comprised of carbon-boron cages that trap strontium atoms, under high-pressure and high-temperature conditions," Zhu said.

The result is a 3D, carbon-based framework with diamond-like bonding that is recoverable to ambient conditions. But unlike diamond, the strontium atoms trapped in the cages make the material metallic -- meaning it conducts electricity -- with potential for superconductivity at notably high temperature.

What's more, the properties of the clathrate can change depending on the types of guest atoms within the cages.

"The trapped guest atoms interact strongly with the host cages," Strobel remarked. "Depending on the specific guest atoms present, the clathrate can be tuned from a semiconductor to a superconductor, all while maintaining robust, diamond-like bonds. Given the large number of possible substitutions, we envision an entirely new class of carbon-based materials with highly tunable properties."

"For anyone who is into -- or whose kids are into -- Pokémon, this carbon-based clathrate structure is like the Eevee of materials," joked Zhu. "Depending which element it captures, it has different abilities."

Tags:  2D materials  Carnegie Institution for Science  Electronics  Graphene  Graphite  Li Zhu  Timothy Strobel  University of Chicago 

Share |
PermalinkComments (0)
 
Page 4 of 35
1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  >   >>   >|