Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Additive Manufacturing & 3D Printing with Graphene

Posted By Terrance Barkan, Friday, January 20, 2017

 

3d printing, also known as additive manufacturing (AM), represents significant potential for the use of graphene material as an additive to the fast growing range of printable materials. This is increasingly true as there is a clear shift towards producing functional parts for industrial end use, including aerospace and automotive applications. 

Despite being a relatively low volume market at the moment, AM has several useful properties than make it an attractive market to a graphene producer as well as to end users. The AM market has a strong appetite to test new materials and to identify innovative applications not just in the AM processes, but in the characteristics of the materials that are used. Rapid process and testing times for new products mean that there is also a low barrier to entry compared to supplying nano-enhanced materials in other manufacturing industries. 

Because traditional AM materials are often quite expensive on their own, adding a relatively expensive material like graphene has less of an impact on the final costs than it might in some other large scale commercial applications. 

One of the advantages of AM is the ability to make one-off or specialty parts with no loss in production speed. Parts are also essentially the same price regardless of whether you print a few or a few thousand pieces. 

Although there are a large number of different AM technologies, there are really just three formats of material, (powders, liquids and filaments) and there are three main classes of material (metals, plastics and ceramics). Graphene has the potential to add desirable characteristics across many of these technologies, formats and material classes. 

One of the most important materials in use with AM today is polymers. There is significant scope for graphene to gain traction and market share here as an additive, primarily due to the ease of processing graphene into polymers. Common thermoplastics used in sintering and extrusion AM techniques include  ABS, PLA, nylons (6 and 12), TPU, PET and HIPS. Thermosets such as epoxy and acrylics are also popular in UV cured AM applications. Despite the relatively difficult processing challenges for metals and ceramics, there is potential for graphene to also add value across those technologies.

Graphene has the ability to provide improvements to conventional AM materials and in some case, these material improvements are unique to graphene. In particular, graphene can have an impact on;


• Much lower solids content 
• Shift material into a printability window 
• Improve HDT and shrinkage 
• Mechanical reinforcement where certain macro additives can’t be used
• Significant multi-functionality (5+ uplifts with one additive) 

 

Essentially graphene is adding benefits to or improving on the performance of a given consumable as well as mitigating or reducing the negatives. Multifunctionality is also important; gaining multiple beneficial properties without resorting to using several additives that might be incompatible with each other and doing so with a low addition rate lowers the risk of adding negative performance into a polymer, such as lower processability or brittleness. 

3D Printing and AM is just another of the many areas where graphene is proving worthy of a much closer look by materials scientists, product designers, engineers and production specialist across a broad range of industries. 

 

Want to learn more? 

 

Join an in-depth Webinar on Graphene and 3D Printing

Tags:  3D Printing  Additive Manufacturing 

Share |
PermalinkComments (0)
 

Graphene Commercialization is closer than you think.

Posted By Terrance Barkan, Friday, October 21, 2016

When we conducted our survey of more than 400 graphene researchers, developers, producers and users earlier this year, less than 10% thought that graphene was a sustainable commercial market today. However, almost 2/3’s felt that graphene would develop into a sustainable commercial market in 6 years or less. (Survey 2016)

 

Based on the feedback and discussions at the Graphene Canada 2016 conference held in Montreal recently, graphene commercialization is a lot closer than most people are aware. 

 

Because graphene has properties that can be applied to such a wide range of potential applications, it is not always easy to see where this material is already being used or where development is most advanced. 

 

A graphene “killer application”?

 

There has been a lot of hype around graphene because of its superlative properties and the promise it holds for radical or revolutionary new applications, products and solutions.

 

There has been an equal measure of disappointment that it has not yet produced a “killer application”, a solution that solves a major problem that is possible because of graphene’s unique properties. 

 

The less sexy, but much more likely path to successful commercialization of graphene, lies in its use in more traditional materials like composites, thermosets (such as epoxies, polyurethane and polyester) and plastics. 

 

For example, Huntsman Advanced Materials (a division of the Huntsman Corporation, a publicly traded global manufacturer and marketer of differentiated chemicals with $10 billion in revenues) is working with graphene specialist firm Haydale to develop graphene enhanced ARALDITE® resins for composite applications. These products are used in the industrial composites, automotive and aerospace markets.

 

 

Huntsman's ARALDITE® resins are being enhanced using Haydale’s expertise in functionalisation of Graphene Nano Platelets (GNP’S) and other nano materials to create highly loaded master batches and to improve thermal / electrical conductivity and mechanical performance. The ultimate objective of the collaboration will be to commercialise graphene enhanced ARALDITE® resins for a range of applications in the

composites market.

 

It is telling that Huntsman, a company whose chemical products number in the thousands and are sold worldwide, has identified graphene as a critical new additive to enhance one of their most important industrial products. 

 

The global polymer market alone is worth at least $658 billion. Even if only a small percentage of this market begins using graphene as a standard additive to improve product performance, it will help support a viable market for graphene producers and formulators. 

 

Better Together

 

Additive Manufacturing, or 3D Printing, is a relatively new and exciting area of activity that is revolutionizing how objects are designed, prototyped and made. It is also a perfect example of how graphene can be used in combination with other traditional materials to create new capabilities and products. 

 

There are already three companies that offer graphene impregnated 3D printing filaments (Haydale, Graphene 3d Labs and Directa Plus) that are in turn letting creative designers develop products that are electrically conductive or that have superior physical properties (stronger, scratch resistant, better UV protections, etc.). 

 

Graphene is added to traditional polymers, paints and coatings to change their performance characteristics. Another company, NanoXplore is producing products as far ranging as specialty paints to fishing buoys (floats that are used in conjunction with fishing nets, crab pots, and related applications) that use graphene to make these products more robust and survivable in very harsh marine environments. 

 

 

What is unique about graphene is that it can make a significant improvement with very small loadings (as little as 1% or less) as compared to competing materials that may require as much as 25-30% loads to make significant performance differences. 

 

What this means is that although graphene materials are currently quite expensive per gram or kilogram, the very low loading levels makes graphene a competitive additive on a cost / benefit basis. 

 

The Future

 

It is difficult to overstate the enormous potential graphene holds to impact an almost unlimited range of industrial sectors, from water treatment to aerospace, from opto-electrical sensors to energy storage, from bio-medical applications to basic materials. 

 

So while university scientists and corporate research and development departments around the world continue to work on the more complicated problems where graphene might disrupt industries like semi-conductors or new generation photocells, graphene is proving its worth in somewhat mundane but equally important industrial materials applications. 

 

Tags:  3D Printing  Commercialization  Directa Plus  Fullerex  Graphene 3d Labs  Haydale  Huntsman  NanoXplore  Paints 

Share |
PermalinkComments (0)