Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Batteries  nanomaterials  University of Manchester  CVD  Graphene Flagship  First Graphene  graphene oxide  coatings  electronics  Healthcare  Li-ion batteries  energy storage  semiconductor  graphene production  Graphite  The Graphene Flagship  Applied Graphene Materials  carbon nanotubes  composites  Haydale  Versarien  Andre Geim  Battery  nanoelectronics  optoelectronics  polymers  3D Printing 

Graphene Nanoplatelets: a future role in pipecoating?

Posted By Graphene Council, The Graphene Council, Tuesday, December 3, 2019
Pipelines constitute a major infrastructure investment frequently carrying materials which in the event of failure can cause significant loss to the owner and serious potential for environmental damage. To fulfil their role pipelines often run long distances either underwater or underground. This physical challenge is often further complicated by the crossing of international borders introducing complex codes and standards of management. Coatings are essential to the protection of pipelines from corrosion and subsequent failure but are themselves subject to degradation by severe abrasion, hydrothermal aging and chemical degradation. These coating systems are typically considered to be passive or active. Passive systems prevent corrosion by blocking key elements of water, oxygen and salts from reaching the pipe surface. Cathodic protection systems (CP) are reactive systems designed to protect pipelines in the event of failure.

Graphene was first produced and identified in 2004 by the group of Andre Geim and Konstantin Novoselev at the University of Manchester, an event which was followed by the Nobel prize for Physics in 2010. One of the remarkable properties of graphene is its impermeability to gases. Graphene manufactured as a single monolayer is time consuming, expensive and difficult to scale. Graphene nanoplatelets (GNPs) offer a cheap and scalable alternative for use in barrier systems. Much research has been carried out on the implementation and use of graphene in coatings including those for pipelines. Direct application of GNP into epoxy has been discussed by Battocchi et al (1) who observed that low level additions of GNP offered improved barrier properties and corrosion mitigation together with improved abrasion resistance. Budd et al(2) applied GNP in laminate structures for flexible risers demonstrating the potential barrier properties of graphene in aggressive conditions. Applied Graphene Materials (AGM) GNPs are manufactured using the company’s patented proprietary “bottom up” process, yielding high specification graphene materials. AGM produce a range of GNP dispersions capable of easy addition into coating systems and have undertaken significant development activity to demonstrate their use in coating systems enabling improved in barrier performance and corrosion resistance.

Corrosion Testing

Current organic coating systems designed for protective coatings applied in harsh environments, such as bridges, are typically comprised of a number of different coating layer, each providing a different set of properties. A basic system usually consists of three layers, which may include a zinc rich primer coat offering sacrificial protection, an intermediate coat and a final topcoat for environmental protection. Typical dry film thicknesses of these coats is around 50 to 150 µm for the primer and intermediate coat and 50 µm for the top coat. Recently it has been demonstrated that GNPs, both as prepared and chemically functionalised, when incorporated into an organic coating system or host matrix, provide via a highly tortuous path which acts to impede the movement of corrosive species towards the metal surface (Okafor et al[3) ) creating a passive corrosion protection mechanism. In support of this, previous work by Choi et al (4) has also shown that very small additions of GNPs decreased water vapour transmission rates indicating a barrier type property, while some authors Aneja et al(5) also report an electrochemical activity provided by graphene within coatings. The introduction of GNPsinto the intermediate coat has recently been demonstrated by AGM(6) to increase significantly the impedance of a protective coating system as measured by EIS when studied in conjunction with Neutral Salt Spray testing (ASTM B117). The intermediate epoxy was formulated as shown below in Table 1.

Three different GNP-containing variants of the control were prepared (D1-D3) using the same initial preparation route as for the epoxy prototype base, by substituting commercially available GNPcontaining dispersion additives (formulation component 10) for epoxy in the final step (formulation component 9). The GNP dispersion additives were effectively treated as masterbatches, and were added in varying amounts according to their graphene content and the final GNP content specified in the end coating (Table 1). The dispersion used in the preparation of D1 and D3 contained a reduced graphene oxide type GNPs (A-GNP10). The dispersions used in the preparation of D2 contained GNPs of a ‘crumpled sheet’ type morphology with a relatively low density and high surface area (A-GNP35). In addition, dispersion D3 based on A-GNP10 contained an active corrosion inhibitor.

Prior to coating application, all substrates were degreased using acetone. Each first coat was applied to grit blasted mild steel CR4 grade panels (Impress North East Ltd.), of dimensions 150 x 100 x 2mm, by means of a gravity fed conventional spray gun. The over coating interval was 3 hours with all panels permitted a final curing period of 7 days at 23°C (+/-2°C). Dry film thickness of the prepared coatings were in the range of 50-60 microns for single coat samples and 150-160 microns for multi coat samples. Full details of the coating systems prepared can be seen in Table 2. All substrates were backed and edged prior to testing.

The panels were placed in a Neutral Salt Spray corrosion chamber, running ISO 9227 for a period of up to 1440 hours. This test method consists of a continuous salt spray mist at a temperature of 35°C. Panels were assessed at 10 day (240 hour intervals) for signs of blistering, corrosion, and corrosion creep in accordance with ISO4628. These assessments were complimented with electrochemical measurements, carried out at the same intervals. All electrochemical measurements were recorded using a Gamry 1000E potentiostat in conjunction with a Gamry ECM8 multiplexer to permit the concurrent testing of up to 8 samples per run. Each individual channel was connected to a Gamry PCT1 paint test cell, specifically designed for the electrochemical testing of coated metal substrates.

Figure 1 shows the progression of impedance modulus for the three coat system samples, measured at 0.1 Hz, over the time period during which the samples were subjected to NSS conditions. Initial impedance values (recorded at t=0) range from the orders of 108 to 1010 Ω.cm2 . The control sample, consisting of a zinc rich primer coat, a layer of commercial equivalent epoxy and polyurethane topcoat, displays the lowest overall impedance values in addition to one of the higher rates of decrease of impedance from the t=0 point. When GNPs are introduced to the intermediate layer, the impedance modulus is increased suggesting that the inclusion of GNPs is acting to increase the barrier performance properties of the system as a whole. The incorporation of A-GNP35 into D2 gave a final system uplift of 5 orders of magnitude above the control. Throughout the testing the D2 formulation showed little change in impedance, compared to the other samples. The achievement of >109 Ohm.cm2 @ 0.1Hz over a period of 1440 hours in neutral salt spray outperformed existing technology in barrier performance equating to a C5 high rating for salt spray performance according to ISO12944-1.

The choice of coating system for pipelines is typically influenced by the geographical region and is often made between thick or thin film build. Critical requirements of coatings in either case are:

• Excellent adhesion

• Low permeability

• Resistance to cathodic disbondment

• High electrical resistance

Thin build coating systems are typically based on Fusion Bonded Epoxy (FBE) either single or double layer being the preferred approach in the North American market. Alternatives might also include high build epoxy or polyurethane. Typically such thin build systems utilise an active CP system to provide additional corrosion protection. Graphene modification as shown by Battochi(1) and by AGM(6) might easily be incorporated into such epoxy or polyurethane systems through the use of AGM’s dispersions. The known electrical conductivity of Graphene might give cause for concern if the incorporation changes the insulating characteristics of the film. The GNP modification demonstrated by AGM is however substantially below the percolation threshold required for conductivity and the net impact on epoxy conductivity is considered negligible (Figure 2).

Thick build coating systems used in other parts of the world are typically 3 layer polyolefin (3LPO and might be polyethylene or polypropylene). AGM has experience in master-batching Graphene into thermoplastics and as such there is no obstacle to the introduction of GNPs into of the main body of the coating. GNP might also be introduced into the adhesive copolymer layer applied to the FBE typically used as a base for the 3LPO coating system.

Tags:  Andre Geim  Applied Graphene Materials  Coatings  Graphene  hydrothermal  Konstantin Novoselev  Nanoplatelets  Pipelines  Pipes  University of Manchester 

Share |
PermalinkComments (2)
 

AGM at the Western Coatings Show 2019

Posted By Graphene Council, The Graphene Council, Wednesday, September 18, 2019
Applied Graphene Materials are exhibiting at Western Coatings Show in Las Vegas, on 20-23 October 2019.

At the show AGM will be promoting their Genable® range which delivers outstanding enhancements to anti-corrosion and barrier performance, while providing opportunities to further optimise other coating characteristics. AGM will soon be promoting a new addition to the Genable® range.

Andy Gent will be giving a presentation titled: Corrosion: Meeting Tomorrows Performance Needs with Graphene Nano-Platelets.

John Willhite and Adrian Potts will also be at stand 332 to answer any questions you may have. You can contact them on +44 (0)1642 438214, or, by e-mail at info@appliedgraphenematerials.com.

Tags:  Adrian Potts  Andy Gent  Applied Graphene Materials  coatings  Graphene  John Willhite 

Share |
PermalinkComments (0)
 

AGM advances applications for water based anti-corrosion coatings

Posted By Graphene Council, The Graphene Council, Thursday, July 18, 2019
Updated: Monday, July 15, 2019

Applied Graphene Materials, the producer of specialty graphene materials, has announced it has achieved significant technological progress (patent pending) on the deployment of graphene into water-based coatings to enhance their barrier properties.

Water-based coating development remains a focus for industry formulators.

This push is driven by the continuing tightening of regulations brought in to lessen the detrimental impact that solvent- based coatings have on both worker health and the environment. As the technology for water-based coatings continues to evolve, one of the key challenges that remains is to significantly improve their anti-corrosion performance. In doing so, this will fully extend their use away from decorative applications into broader industrial protective coatings.

Over recent years AGM has proven the outstanding barrier and anti-corrosion performance gains possible by incorporating graphene into solvent-based coating systems using its Genable® dispersion technology. This has been demonstrated with several commercial products reaching industrial end-user markets. However, effective incorporation of graphene into water-based systems has previously proven more problematic due to interrelated issues around materials compatibility and film formation.

This water-based breakthrough is again based on AGM's platform Genable® technology, a range of master dispersions that are designed to facilitate the easy incorporation of graphene into coating formulations and existing processes. Genable® dispersions are fully scalable industrial products and, based on initial findings, the addition levels required to significantly enhance anti-corrosion performance in water-based systems are low enough to ensure commercial viability, even in light industrial applications.

Adrian Potts, CEO of Applied Graphene Materials, said:
"A key driver for coatings developers to upgrade their product formulations is increasing regulatory pressure to improve the environmental impact and safety of their products. This is why AGM is working to replicate the success we have already achieved with the incorporation of our Genable® products into solvent-based products with its incorporation into water-based products. We are delighted to be able to present significant technological progress to our customers, reaffirming AGM as the leader in the development of cutting-edge graphene applications tailored to add significant value for paints and coatings manufacturers."

While the findings being shared publicly are in a commercial acrylic DTM (Direct-to-Metal) coating, AGM believes that water-based Genable® technology could, with considered formulating, equally well be adopted into epoxy chemistries and likewise into more complex formulated primer systems.



AGM remains the industry leader for graphene exploitation into the global paints and coatings industry, boasting a highly experienced formulations and applications team, supported by a well-equipped product development and characterisation laboratory and production capability for consistent manufacturing.

Tags:  Adrian Potts  Applied Graphene Materials  Coatings  Corrosion  Graphene 

Share |
PermalinkComments (0)
 

AGM signs distribution agreement with CAME srl

Posted By Graphene Council, The Graphene Council, Friday, May 31, 2019

Applied Graphene Materials (AGM) announced it has signed a distribution agreement with CAME Srl, Italy, a leading international chemical distribution business. The agreement extends AGM's commercial reach directly into the Italian coatings and chemicals sectors. CAME, based in Milan, also represents a wide range of international supply partners throughout Europe and the Middle East. Its customer base includes many organisations in the coatings, adhesives and lubricants markets, making it an ideal distribution partner for AGM in the Italian market within its key target sectors.

AGM and CAME have been engaged in early market development over the last 18 months and the agreement represents a major commitment from both companies to exploit AGM's exciting graphene technology.

Adrian Potts, AGM CEO commented:

"It is an absolute priority for AGM to maximise its global exploitation plans. We are pleased with growing industry recognition of the benefits of our Genable® graphene dispersion technologies. These are proving to be ideally suited to anti-corrosion and barrier performance in coatings and are generating increasing commercial traction in the sector. We are gaining significant momentum in Italy with a growing number of target accounts. Complementary to this is our strategy of establishing a highly credible and technically reactive distribution network to effectively broaden our sales footprint. CAME are ideal partners for AGM and having worked with them over recent months, we are confident they will provide an excellent route to market for AGM products."

Verena Cepparulo, CAME Managing Director:

"We have followed the development of AGM's Genable® dispersion technology and see its great potential, particularly in the area of anti-corrosion performance. AGM has demonstrated they now have a strong product base, supported by a highly experienced and skilled technical support team, and we are very excited by the opportunity to be part of their ambitious growth plans. We have already undertaken our own market research and see significant potential within the Italian market".

Tags:  Adrian Potts  Applied Graphene Materials  CAME srl  coatings  Corrosion  Graphene  Verena Cepparulo 

Share |
PermalinkComments (0)
 

Applied Graphene Materials secures patent approval

Posted By Graphene Council, The Graphene Council, Thursday, May 30, 2019
Updated: Saturday, May 25, 2019

Applied Graphene Materials announced that the Company has received patent approval for its unique manufacturing process in the tenth out of eleven territorial applications made in 2019. 

AGM’s strategy is to ensure it has patent coverage in all of the major international territories in order to protect its technology.

This latest patent approval is in a strategically important territory for the Group and follows receipt of approval from the USA patent office in 2018.

As the Company deepens its dispersion expertise to enable the effective transfer of graphene’s unique combination of properties into customer materials, AGM continues to file patent applications for its proprietary manufacturing and dispersion processes, and products as appropriate, with a particular focus on graphene dispersions for paints and coatings.

Adrian Potts, Chief Executive Officer of Applied Graphene Materials, said:
“Our aim is to become a leading supplier of graphene globally. Receiving patent approval in another strategically important territory for AGM is an important development, as we continue to secure our competitive position in international markets where we see significant long-term commercial opportunity.”

Tags:  Adrian Potts  Applied Graphene Materials  coatings  Graphene  Paint 

Share |
PermalinkComments (0)
 

Genable® anti-corrosion technology gains further recognition

Posted By Graphene Council, The Graphene Council, Tuesday, March 5, 2019

Applied Graphene Materials, the producer of specialty graphene materials today announces that its breakthrough graphene technology Genable® 3000 has delivered outstanding anti-corrosion performance enhancement results that has led the business to be nominated for a key industry award.

Genable® is a unique metal-free additive that transforms coatings and paints enabling them to uniquely withstand aggressive corrosion in automotive, heavy industry and harsh marine environments. The results from over 3,000 hours of typical vigorous environment testing demonstrate the long-term structural resilience that AGM’s products provide against corrosion, establishing a new market standard.

The development re-affirms the Company’s compelling position and potential within the £8.1bn global coating markets and follows its recent announcement that James Briggs Limited, Europe’s largest consumer chemicals businesses, intends to bring a new range of aerosol automotive paint primers containing AGM graphene to market , setting new levels of corrosion protection in the aerosol automotive paint market.

Jim Miller, JBL’s Commercial Director commented:
"The 2 year development collaboration between JBL and AGM has resulted in our first products coming to fruition for the automotive market. Initial feedback from the market is very positive, with customers keen to see innovative products with genuine substantive performance improvements, which these products deliver through utilisation of AGM’s graphene dispersion technology.”

The momentum that AGM’s proprietary Genable® 3000 graphene technology has achieved has helped drive industry wide recognition of AGM’s expertise as an innovation leader in the coatings industry. Reflecting this, the Company has secured a nomination as a finalist in the Materials Performance Corrosion Innovation Awards 2019. The MP Corrosion Innovation Awards program acknowledges the leaders advancing understanding and development of global corrosion technology.  It is run in parallel with NACE International. Winners will be announced at the CORROSION conference 2019 in Nashville, Tennessee, USA.

Adrian Potts, CEO of Applied Graphene Materials commented:
“AGM’s technology is an exciting and first of its kind development for the global coatings industry. It will significantly increase the lifespan of metals in harsh environments, ensuring very attractive cost advantages for customers.  As we create new standards across the market, we are delighted to have been nominated as a Finalist for the 2019 Corrosion Industry Innovation Award, recognising our ground-breaking Genable® 3000 technology.  Our recent success with UK paint producer James Briggs and 3,000-hour trials are hugely positive and highlight our potential to bring innovation to many different industries and markets.”

Tags:  Adrian Potts  Applied Graphene Materials  Corrosion  Graphene  James Briggs  Jim Miller 

Share |
PermalinkComments (0)
 

James Briggs to launch graphene enhanced Hycote range using AGM's material

Posted By Graphene Council, The Graphene Council, Thursday, February 28, 2019

James Briggs have successfully completed their Graphene products first production batch, which is a significant milestone on the path to commercial realisation.

Extensive testing has demonstrated repeated and outstanding improvements in anti-corrosion performance for their automotive aerosol primer. JBL plan to launch the new range of graphene enhanced anti-corrosion aerosols under their Hycote brand.


Graphene is a single atom layer of graphite. Its ability to form hexagonal lattice structure gives it exceptional properties in terms of strength, electricity and heat conduction.

These single atom lattice structures can stack to form layers. In coatings this lattice structure gives excellent barrier properties and in the case of our specially formulated primer, this results in excellent salt spray resistance and therefore give superior anti-corrosive performance when compared to a similar product without graphene.

Applied Graphene Materials is the supplier off graphene to James Briggs for this product. 

Tags:  Applied Graphene Materials  Graphene  Graphite  James Briggs 

Share |
PermalinkComments (0)
 

Applied Graphene Materials creates graphene-enhanced anti-corrosion paint primer.

Posted By Terrance Barkan, Thursday, December 27, 2018

Applied Graphene Materials, originally spun out of Durham University and now based in Redcar, is creating a new range of graphene-enhanced anti-corrosion aerosols for James Briggs.

AGM say the completion of its first production batch is a "significant milestone" and they now plan to work towards a full product launch.

Based at the Wilton Centre, near Redcar, AGM makes powdered graphene, with the substance hailed by some experts as being capable of conducting electricity a million times better than copper, despite being as thin as human hair.

The business has developed a form of graphene it says can deliver a six-fold improvement in barrier and anti-corrosion properties, with James Briggs expected to use the product in primers to offer greater protection from weathering.

Bosses claim testing had demonstrated "repeated improvements in anti-corrosion performance".

Bryan Dobson, chairman of Applied Graphene Materials, said: "The Board continues to focus on the commercialisation of its products and proprietary technologies via its numerous active engagements and has made good progress in recent months.

"I am pleased to report that we have recently achieved a key milestone, having fulfilled the scale-up production purchase order from James Briggs Ltd in preparation for full product launch.

"JBL has successfully completed its first production batch which is a significant milestone for commercial realisation. Extensive testing has demonstrated repeated and outstanding improvements in anti-corrosion performance for JBL’s automotive aerosol primer. JBL plans to launch their new range of graphene enhanced anti-corrosion aerosols under their Hycote brand."

Mr Dobson als said the firm was pleased to participate in the opening of the UK’s Graphene Engineering and Innovation Centre (GEIC) in Manchester last week.

"Meeting with multiple participants, the opportunities for graphene technology remain buoyant," he said.

"Finding practical application solutions for the challenges surrounding the exploitation of graphene nanoplatelet technology is the key focus of AGM’s strategy for commercial progress.

"We look forward to working closely with GEIC in the months ahead in the further development of world-class application solutions."

James Briggs was founded almost two centuries ago and they have the capacity to distribute up to 150 million aerosols. 

Tags:  Applied Graphene Materials  coatings  Corrosion  graphene  Hycote  James Briggs  Paint 

Share |
PermalinkComments (0)
 

The World’s Largest Graphene Community Adds Tenth Corporate Member

Posted By Terrance Barkan, Monday, July 31, 2017

The efforts of The Graphene Council in providing information to the graphene community receives strong corporate support. 

 

The Graphene Council, the largest member-driven community in the world focused on graphene research and commercialization, has reached a key milestone by adding its tenth corporate member bolstering its efforts in representing and providing information to the graphene community. 

 

The newest members, UK-based Haydale Graphene Industries  and Australia-based Talga Resources, join an international group of leading graphene companies that includes Montreal-based NanoXplore, Australia-based Imagine Intelligent Materials (Imagine IM), UK-based Applied Graphene Materials, Norway-based CealTech AS,   UK-based William Blythe, Hong Kong-based Perfect Right Limited (Oovao Powers) and Australian First Graphite. In addition the US-based association SPIE—the International Society for Optics and Photonics has also seen value in becoming a Corporate Member and taking advantage of up-to-date market intelligence and other benefits.

 

Representing graphene producers on four continents, these leading companies and association recognize the value of sharing and disseminating information across an open platform where the views and issues surrounding graphene research and commercialization can be advanced.

 

“Partnering with other organizations to further the sharing of information and enhancing the discussion around technologies not only helps SPIE meet its charter but, more importantly, enables the advancement of research, science, engineering and practical applications in these technologies,” said Robert F. Hainsey, Ph.D., the Director of Science and Technology for SPIE.

 

Established in late 2013, The Graphene Council quickly developed the largest LinkedIn group in the field of graphene and an even larger private community with 8,500 members. It has significantly expanded its reach and impact through original market survey reports and by providing original content in newsletters, articles and blogs.

 

One of the first providers of online webinars dedicated to the commercial issues surrounding graphene, The Graphene Council has also researched and published one of the most extensive surveys of companies producing graphene on the status of commercialization and highlighting major issues. This survey has also served as a key document in government-led analysis of the graphene market.

 

The Graphene Council is also the sole provider of the 2017 Bulk Graphene Pricing Report, the most up-to-date and detailed analysis of how graphene can compete in application areas that includes composites, thermo plastics, 3D manufacturing, rubber and plastics, cement, lubricants and many others.  

 

The Graphene Council has also partnered with Springer Nature publications to publish the first academic journal dedicated to applied graphene research and analysis, The Graphene Technology Journalthe first full issue will be published in September 2017.

 

As a formal member of the ISO/ANSI TC 229 Nanotechnology Standards Development Group as well as the IEC TC 113 Nano-Electrotechnologies, the Graphene Council is at the forefront of the development of graphene standards that will benefit graphene suppliers, buyers and users.

 

For more information about joining the leading community in the world for graphene professionals, please visit The Graphene Council.

 

Contact:

 

Terrance Barkan CAE, Executive Director
Direct:  +1 202 294 5563

tbarkan@thegraphenecouncil.org


Tags:  Applied Graphene Materials  Bulk Graphene Pricing  CealTech  First Graphite  Graphene Technology Journal  Handle  IM  Imagine Intelligent Materials  NanoXplore  Oovao Powers  Perfect Right Limited  SPIE  Standards  Talga  William Blythe 

Share |
PermalinkComments (0)