Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Paving the way for tunable graphene plasmonic THz amplifiers

Posted By Graphene Council, Wednesday, September 9, 2020
Tohoku University Professor Taiichi Otsuji has led a team of international researchers in successfully demonstrating a room-temperature coherent amplification of terahertz (THz) radiation in graphene, electrically driven by a dry cell battery.

Roughly 40 years ago, the arrival of plasma wave electronics opened up a wealth of new opportunities. Scientists were fascinated with the possibility that plasma waves could propagate faster than electrons, suggesting that so-called "plasmonic" devices could work at THz frequencies. However, experimental attempts to realize such amplifiers or emitters remained elusive.

"Our study explored THz light-plasmon coupling, light absorption, and amplification using a graphene-based system because of its excellent room-temperature electrical and optical properties," said Professor Otsuji who is based at the Ultra-Broadband Signal Processing Laboratory at Tohoku University's Research Institute of Electrical Communication (RIEC).

The research team, which consisted of members from Japanese, French, Polish and Russian institutions, designed a series of monolayer-graphene channel transistor structures. These featured an original dual-gathering gate that worked as a highly efficient antenna to couple the THz radiations and graphene plasmons.

Using these devices allowed the researchers to demonstrate tunable resonant plasmon absorption that, with an increase in current, results in THz radiation amplification. The amplification gain of up to 9% was observed in the monolayer graphene -- far beyond the well-known landmark level of 2.3% that is the maximum available when photons directly interact with electrons without excitation of graphene plasmons.

To interpret the results, the research team used a dissipative plasmonic crystal model, capturing the main trends and basic physics of the amplification phenomena. Specifically, the model predicts the increase in the channel dc current that drives the system into an amplification regime. This indicates that the plasma waves may transfer the dc energy into the incoming THz electromagnetic waves in a coherent fashion.

"Because all results were obtained at room temperature, our experimental results pave the way toward further THz plasmonic technology with a new generation of all-electronic, resonant, and voltage-controlled THz amplifiers," added Professor Otsuji.

Tags:  Battery  Graphene  Taiichi Otsuji  Tohoku University 

Share |
PermalinkComments (0)
 

NETL CHEMIST: LAB’S LOW-COST GRAPHENE TO FUEL ‘REBIRTH’ FOR COAL

Posted By Graphene Council, Wednesday, August 26, 2020
In his long career at NETL, McMahan Gray has experienced more than a few successes.

For example, the award-winning research chemist has made valuable contributions to remove carbon from industrial emissions and extract rare earth elements (REEs) from coal byproducts, wastewater and even acid mine drainage.

Another ground-breaking contribution may be just around the corner. As part of an ongoing research effort, Gray serves on an NETL team that’s writing a new chapter in the long productive history of coal that may revolutionize how the mineral is used in the future.

The team has found that rather than combust coal to produce energy, it can be used in new ways to fuel a transformation in carbon-based, high-tech manufacturing to produce safer cars, faster computers, stronger homes, bridges and highways, and even life-saving biosensors to confirm the presence of disease in the human body.

“We were looking for a rebirth in how coal can be used when we began our project,” said Gray, who has worked at the Lab for 34 years. “I think the rebirth we will see is going to produce sophisticated new uses for coal that have absolutely nothing to do with burning it to produce electricity.”

Gray and his NETL colleagues have developed a patent-pending manufacturing process that converts lignite, bituminous and anthracite ranks of coal into graphene, whose superior strength and optical and electrical conductivity properties make it a game-changing material. (Shi, Fan; Matranga, Christopher; Gray, McMahan; Ji, Tuo., Production of Graphene-structured Products from Coal Using Thermal Molten Salt Process, U.S. Non-provisional Patent No. 16/369,753, 2019).

NETL’s low-cost coal-to-graphene, or C2G, manufacturing process will not only generate a superior material to produce high-value products; it also will create new environmentally friendly uses for one of the nation’s greatest resources — its abundant reserves of coal.

According to Gray, it takes a solid team effort to achieve success. “Teamwork, the leadership of an excellent principal investigation (Matranga) and the outstanding work of my colleagues have enabled us to develop this process so coal can be used in new and innovative ways,” Gray said. 

Discovered in 2004, graphene is only one atomic layer thick, but it’s 100 times stronger than construction steel and 1.6 times more electrically conductive than copper electrical wire. Graphene is a form of carbon. Both graphene and carbon possess the same atoms, but they are arranged in different ways, giving each material its own unique properties. For graphene, those differences produce extraordinary strength.  

However, the high cost of existing supplies of graphene have limited its use. “NETL’s technology reduces the cost of manufacturing graphene by up to tenfold while producing a significantly higher-quality material than what is currently available on the market,” Gray said.

In the future, the team envisions using graphene to build lighter and stronger cars. Gray believes it also can be used to create advanced lightweight body armor for U.S. troops.

Because graphene is one of the lightest, strongest and thinnest materials ever discovered, it makes an ideal additive to improve the mechanical properties and durability of cement and produce battery and electrode materials, 3D printing composites, water- and stain- resistant textiles, catalyst materials and supports, and other items.

NETL also has produced graphene quantum dots — small fluorescent nanoparticles with sheet-like structures — and sent them to the University of Illinois at Urbana-Champaign where they are used to fabricate an advanced type of computer memory chip called a memristor. Recent testing has shown that memristors made with NETL graphene have outperformed those made with conventional materials.

In addition, the project team is collaborating with Ramaco Carbon, a Wyoming-based coal technology company, to take advantage of graphene’s superb electrical conductivity to develop new biosensor products that can quickly confirm the presence of Lyme disease, Zika virus or the amount of medication in a blood sample.

Gray is no stranger to advancing ground-breaking projects.

He led NETL researchers who developed the basic immobilized amine sorbent (BIAS) process to capture carbon dioxide (CO2) from coal-burning power plants. Recognizing that the BIAS approach could do more than capture CO2 from coal combustion, Gray has worked to adapt the technology of sorbents, which are designed to absorb targeted chemical compounds, to remove heavy metals, including lead, from public water supplies and recover valuable rare earth elements (REEs) from acid mine discharges and other sources.

REEs, which are needed to produce high-performance optics and lasers, as well as powerful magnets, superconductors, solar panels and valuable consumers products such as smart phones and computer hard drives, are abundant in nature but are often found in low concentrations and are challenging to extract.

Recently, while working on the coal-to-graphene project, Gray made another exciting discovery that directly benefits his efforts in REE extraction. Gray has found that the water used in the coal-to-graphene process contains REEs in the range of 600 parts per million. “In the field of REE research, that’s a very high extraction rate,” Gray said.

“I call it a ‘double hit,’ which sometimes happens when research on one project produces a positive finding to benefit another project,” said Gray, who received a prestigious R&D 100 award in 2012 for the BIAS technology’s carbon capture application.

Gray is listed as the primary or secondary inventor on 21 patents, and his work has been cited in more than 120 scholarly papers. His other notable honors include the Federal Laboratory Consortium Mid-Atlantic Region Award for Technology Transfer and the Federal Laboratory Consortium National Award for Excellence in Technology Transfer.

He has also received the Hugh Guthrie Award for Innovation as one of NETL’s leading scientists. In 2018, he was awarded a Gold Medal for “Outstanding Contribution to Science (Non-Medical)” from the Federal Executive Board for Excellence in the Government.

The Chemistry Department at the University of Pittsburgh has announced it will present Gray with its 2020 Distinguished Alumni Award for his work advancing innovative technologies while serving as a mentor who has inspired hundreds of students and colleagues.

For Gray, NETL’s revolutionary graphene project rejuvenates coal for high-value uses. “Coal gets a bad rap,” said Gray, who also serves as pastor of Second Baptist Church of Penn Hills near Pittsburgh, Pennsylvania.

“The molecular structure behind coal is amazing. There’s really so much more we can do with coal,” he added.

Tags:  Battery  Biosensor  composites  Energy  Graphene  National Energy Technology Laboratory 

Share |
PermalinkComments (0)
 

Anode Material for Safe Batteries with a Long Cycle Life

Posted By Graphene Council, Monday, August 10, 2020
The demand for electric vehicles is increasing, accompanied by a growing need for smart grids that ensure a sustainable energy supply. These and other mobile and stationary technologies require suitable batteries. Storing as much energy as possible in the smallest possible space with the lowest possible weight – lithium-ion batteries (LIB) still meet this requirement best. The research aims at improving the energy density, power density, safety, and cycle life of these batteries. The electrode material is of major importance here. Anodes of lithium-ion batteries consist of a current collector and an active material applied to it that stores energy in the form of chemical bonds. In most cases, graphite is used as the active material. 

However, negative electrodes made of graphite have a low charging rate. Moreover, they are associated with safety issues. Among the alternative active materials, lithium titanate oxide (LTO) has already been commercialized. Negative electrodes with LTO present a higher charging rate and are considered to be safer than those made of graphite. The drawback is that lithium-ion batteries with lithium titanate oxide tend to have a lower energy density.

The team around Professor Helmut Ehrenberg, head of the Institute for Applied Materials – Energy Storage Systems (IAM-ESS) of KIT, now investigated another highly promising anode material: lithium lanthanum titanate with a perovskite crystal structure (LLTO). According to the study, which was carried out in collaboration with scientists from Jilin University in Changchun (China) and other research institutes in China and Singapore, LLTO anodes have a lower electrode potential compared to commercialized LTO anodes, which allows for a higher cell voltage and a higher capacity. “Cell voltage and storage capacity ultimately determine the energy density of a battery,” explains Ehrenberg. “In the future, LLTO anodes might be used to build particularly safe high-performance cells with a long cycle life.” 

The study contributes to the work of the research platform for electrochemical storage, CELEST (Center for Electrochemical Energy Storage Ulm & Karlsruhe), one of the largest battery research platforms worldwide, which also includes the POLiS excellence cluster.

Besides energy density, power density, safety and cycle life, the charging rate is another determining factor for the suitability of a battery for demanding applications. In principle, the maximum discharge current and the minimum charging time depend on the ion and electron transport both within the solid body and at the interfaces between the electrode and electrolyte materials. To improve the charging rate, it is common practice to reduce the particle size of the electrode material from micro to nano scale. The study, which was published in the Nature Communications journal by KIT researchers and their cooperation partners, shows that even particles of a few micrometers in size in LLTOs with a perovskite structure feature a higher power density and a better charging rate than LTO nanoparticles. The research team attributes this to the so-called pseudocapacitance of LLTO: Not only are individual electrons attached to this anode material, but also charged ions, which are bound by weak forces and can reversibly transfer charges to the anode. “Thanks to the larger particles, LLTO basically enables simpler and more cost-effective electrode manufacturing processes,” explains Ehrenberg.

Tags:  Battery  Graphene  Graphite  Helmut Ehrenberg  Karlsruhe Institute of Technology  Li-ion Batteries 

Share |
PermalinkComments (0)
 

Outstanding detailed feasibility study results support Talga’s anode project

Posted By Graphene Council, Wednesday, August 5, 2020

Talga is pleased to advise the outcomes of feasibility work and studies completed on its Vittangi Anode Project (“Project”) in northern Sweden.

Talga is building an integrated graphite anode facility in Sweden running on 100% renewable electricity, to produce ultra-low emission coated anode for greener lithium-ion (“Li-ion”) batteries. Production of the Company’s flagship fully coated anode product, Talnode®-C, will be based initially on the unique flake graphite of its Nunasvaara South deposit near Vittangi.

Project development has  been  marked  by  operational  impacts  during  the  COVID-19  pandemic. In consideration of these impacts, the development of the Project will now be combined into a single commercial stage, amalgamating the two stages previously outlined in the Project Pre-feasibility Study (“PFS”). The overall economic and financial parameters for the combined stages remain materially unchanged from the PFS.

Since the publication of the PFS in May 2019 Talga has undertaken further studies into the Talnode-C product, anode production, graphite processing and battery market as part of detailed feasibility work on the Project.

Completed feasibility work on the start-up phase (Stage 1) of the Project show highly positive outcomes which will be refined further in the upcoming commercial Detailed Feasibility Study (“DFS”). Improvements in Project performance identified in the latest feasibility work include:

• Project development to proceed directly to commercial phase with Project commissioning in 2022 and commercial production in 2023, subject to commercial DFS planned for Q1 2021
• Yield of Talnode-C (from graphite concentrate) increased to 99%, up from 88% in PFS
• Total recovery of Talnode-C (from graphite ore) increased to 90%, up from 80% in PFS
• Energy savings of 30% in graphite concentrate production
• Successful piloting of proprietary sustainable purification process producing battery-grade graphite concentrate without use of industry standard hydrofluoric acid (“HF”)
• Ability to produce Talphene graphene products for battery and polymer composite applications from anode refinery stream
• Positive feedback on Talnode-C from major battery manufacturers including high capacity and fast- charge performance during qualification tests
• Refinement of Talnode-C coating treatment based on input from automotive OEM customers
• Pre-production scale Talnode-C pilot plant to satisfy larger automotive OEM qualification process
• Further cost optimisations and growth opportunities identified including resource expansion and underground mining options

The fast track pathway simplifies Project development and enables the Company to progress directly to commercial anode production of 19,000 tonnes per annum (“tpa”) with commencement of construction in 2022 and production in 2023, as outlined in the  PFS.  Talga’s potential Project partners and customers have indicated that they support this plan.

Commenting on the feasibility study results, Talga Managing Director Mark Thompson said: “I credit our staff members and technical partners for their work in realising these significant improvements which span every area of our anode project development. In spite of COVID-19 disruptions our commercial development remains firmly on track thanks to the ingenuity of the Talga team. The great results of the recent feasibility work shows significant benefits to be gained in the short and long term and support the simplified amalgamated development plan.

With increasing demand for Li-ion battery anode sourced from secure and clean supply chains Talga is attracting attention as a potential major anode producer outside China. The range of parties we are engaged with, from product sales to project development partnerships, are truly world-class and well-suited to our project execution strategy. We look forward to sharing more results of these partnerships over the coming months.”

For more information http://www.talgagroup.com/irm/PDF/8e8738bb-527b-4073-9d85-b7db737b468a/Outstandingdetailedfeasibilityresults

Tags:  Battery  Graphene  Graphite  Li-ion Batteries  Mark Thompson  Talga 

Share |
PermalinkComments (0)
 

Novel approach improves graphene-based supercapacitors

Posted By Graphene Council, Tuesday, August 4, 2020
This is creating an exponential need for advanced energy storage technologies -- reliable and maintenance-free batteries and supercapacitors (SC) with high power density capability as storage devices. Supercapacitors are prominent candidates to meet this need due to their environmentally friendly and long cyclability characteristics.

Researchers from the Integrated Nano Systems Lab (INSys Lab), in the Centre for Clean Energy Technology, have been working on a pathway to improve the performance of supercapacitors, and meet that demand for increased storage capacity.

Dr Mojtaba Amjadipour and Professor Francesca Iacopi (School of Data and Electrical Engineering) and Dr Dawei Su (School of Mathematical and Physical Sciences) describe their cutting-edge work in the July 2020 issue of the journal Batteries and Supercaps. The prominence given to Graphitic-Based Solid-State Supercapacitors: Enabling Redox Reaction by In Situ Electrochemical Treatment -- designated a Very Important Paper with front coverage placement -- signifies just how innovative their research is in developing alternate ways to extend storage capacity.

Dr Iacopi said the multi-disciplinary approach within the team was beneficial in discovering what she says is a simple process.

"This research has originated from our curiosity of exploring the operation limits of the cells, leading us to unforeseen beneficial results. The control of this process would not have been possible without understanding the fundamental reasons for the observed improvement, using our team's complementary expertise."

Traditionally, supercapacitors are fabricated with liquid electrolytes, which cannot be miniaturised and can be prone to leakage, prompting research into gel-based and solid-state electrolytes. Tailoring these electrolytes in combination with carbon-based electrode materials such as graphene, graphene oxide, and carbon nanotubes is of paramount importance for an enhanced energy storage performance.

Graphene or graphitic carbon directly fabricated on silicon surfaces offers significant potential for on-chip supercapacitors that can be embedded into integrated systems. The research insights indicate a simple path to significantly enhance the performance of supercapacitors using gel-based electrolytes, which are key to the fabrication of quasi-solid-(gel) supercapacitors.

"This approach offers a new path to develop further miniaturized on-chip energy storage systems, which are compatible with silicon electronics and can support the power demand to operate integrated smart systems," Dr Iacopi said.

Tags:  Battery  Francesca Iacopi  Graphene  Integrated Nano Systems Lab  Mojtaba Amjadipour  supercapacitors 

Share |
PermalinkComments (0)
 

Hope for better batteries - Researchers follow the charging and discharging of silicon electrodes live

Posted By Graphene Council, Thursday, July 30, 2020
Whether smartphones or electric cars: Wherever electrical power is to be available on the go, it usually comes from rechargeable lithium-ion batteries. One of the two electrodes consists of graphite, in which lithium ions are stored to store energy. The disadvantage of the carbon material: its capacity is quite low - which requires frequent battery charging. That is why researchers worldwide are looking for alternative electrode materials for batteries with longer charging cycles.

Silicon pushes the storage capacity

Silicon is a promising candidate. Because it can absorb more than ten times as much ions as graphite. "In addition, silicon is one of the most common elements in the earth's crust and is available in almost inexhaustible quantities," says Dr. Sebastian Risse, who deals with the analysis of storage materials at the HZB. Some battery manufacturers are already using small silicon particles to improve the energy storage capacity of graphite electrodes. But this trick has limits. "When lithium ions are stored, the silicon expands to a multiple of its normal size," explains Risse. The result: the material gradually becomes brittle.

A team of researchers at HZB headed by Sebastian Risse has now investigated what is going on in the material in detail and in high resolution on electrodes made of crystalline silicon - and followed the physical processes during charging and discharging live as in a film. The basis for this is the multidimensional operando analysis - a technique that the Berlin researchers have developed in recent years. "We can use it to measure different properties at the same time and thus track changes in the shape of the material - while the battery is being operated in the usual way," says Risse.

Battery operation in coherent X-ray light

In addition to electrical measurements and recordings with an electron microscope, the Berlin researchers also rely on the phase contrast imaging method. "It uses a coherent X-ray beam that only a synchrotron can deliver," emphasizes Sebastian Risse. The physicist and his colleagues used X-rays from the HZB's BESSY II synchrotron storage ring for their experiments. In doing so, they targeted an electrode made of crystalline silicon as it went through several charging and discharging cycles. In the coherent X-ray radiation - in which all waves of the X-ray light vibrate in unison - the subtleties of the material structure lead to characteristic phase shifts. "This way, much more details can be observed than with an analysis with normal X-ray light," says Risse. The necessary know-how was managed by Dr.

The results of the high-resolution operando imaging of crystalline silicon electrodes provide new insights into the promising system. In this way, the researchers were able to show that when loading and unloading, a checkerboard-like fracture pattern emerges and disappears again. "Although the breaks get a little bigger each time they are unloaded, the pattern is retained," reports Risse. "There are no new breaks."

This is good news for using silicon in batteries. Additional hope gives another discovery. The storage of lithium ions in the crystal lattice of silicon takes place in two steps: First, a phase weakly loaded with lithium is formed, then a second phase, rich in lithium. The process is reversed when unloading. The Berlin researchers have now found that the material only breaks in the second step when the low-lithium phase is also discharged.

The foundation for persistent electricity donors

"If only one part of the silicon were used to store ions at a time, the macroscopic damage to the material could be avoided," concludes Sebastian Risse. And although they would not use up the full storage capacity, lithium-ion batteries with electrodes made of silicon could absorb much more energy than those made of graphite. Mobile phones would then have to be plugged in less frequently, and electric cars could cover longer distances with one battery charge. "There is still a long way to go," says HZB physicist Risse. But the scientific foundation for this has now been laid.

Tags:  Batteries  Battery  Graphene  Lithium  Sebastian Risse 

Share |
PermalinkComments (0)
 

NanoGraf Receives $1.65 Million from U.S. Department of Defense to Improve the Batteries that Power Soldiers’ Missions

Posted By Graphene Council, Wednesday, July 22, 2020
NanoGraf, an advanced battery material company, today announced that it has partnered with the U.S. Department of Defense to develop a longer-lasting lithium-ion battery, designed to provide U.S. military personnel with better portable power for the equipment they rely on to operate safely and effectively.

The Department of Defense will provide NanoGraf with $1.65 million to develop silicon anode-based lithium-ion technology in a format compatible with all portable batteries, with a goal of enabling a 50-100 percent increase in runtime when compared to traditional graphite anode lithium-ion cells. 

The $1.65 million grant is provided by The Small Business Innovation Research (SBIR) program, a U.S. government program whose mission is to support scientific excellence and technological innovation through investment in research in critical American priorities for a strong national economy. 

“We’re tremendously excited by the opportunity to partner with the Department of Defense on such a mission-critical project,” said Cary Hayner, co-founder and Chief Technology Officer of NanoGraf. “Portable power is crucial when it comes to keeping U.S. soldiers safe, and we know NanoGraf brings the necessary knowledge and technology to get there.” 

Enhanced portable power is key to the U.S. military’s ability to provide resilient networks, portable communications, and the ability to operate effectively as a smaller dispersed force –  ultimately keeping U.S. soldiers and military operators safer as they execute critical missions around the globe.

The $1.65 million in funding from the Department of Defense requires NanoGraf to develop a battery cell that can operate across a wide temperature range from -4° F to 131° F, and which has a shelf life of greater than two years.

Tags:  Battery  Cary Hayner  Graphene  Li-ion Batteries  NanoGraf 

Share |
PermalinkComments (0)
 

Battery Breakthrough Gives Boost to Electric Flight and Long-Range Electric Cars

Posted By Graphene Council, Wednesday, July 22, 2020
In the pursuit of a rechargeable battery that can power electric vehicles (EVs) for hundreds of miles on a single charge, scientists have endeavored to replace the graphite anodes currently used in EV batteries with lithium metal anodes.

But while lithium metal extends an EV’s driving range by 30–50%, it also shortens the battery’s useful life due to lithium dendrites, tiny treelike defects that form on the lithium anode over the course of many charge and discharge cycles. What’s worse, dendrites short-circuit the cells in the battery if they make contact with the cathode.

For decades, researchers assumed that hard, solid electrolytes, such as those made from ceramics, would work best to prevent dendrites from working their way through the cell. But the problem with that approach, many found, is that it didn’t stop dendrites from forming or “nucleating” in the first place, like tiny cracks in a car windshield that eventually spread.

Now, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with Carnegie Mellon University, have reported in the journal Nature Materials a new class of soft, solid electrolytes – made from both polymers and ceramics – that suppress dendrites in that early nucleation stage, before they can propagate and cause the battery to fail.

The technology is an example of Berkeley Lab’s multidisciplinary collaborations across its user facilities to develop new ideas to assemble, characterize, and develop materials and devices for solid state batteries.

Solid-state energy storage technologies such as solid-state lithium metal batteries, which use a solid electrode and a solid electrolyte, can provide high energy density combined with excellent safety, but the technology must overcome diverse materials and processing challenges.

“Our dendrite-suppressing technology has exciting implications for the battery industry,” said co-author Brett Helms, a staff scientist in Berkeley Lab’s Molecular Foundry. “With it, battery manufacturers can produce safer lithium metal batteries with both high energy density and a long cycle life.”

Helms added that lithium metal batteries manufactured with the new electrolyte could also be used to power electric aircraft.

A soft approach to dendrite suppression
Key to the design of these new soft, solid-electrolytes was the use of soft polymers of intrinsic microporosity, or PIMs, whose pores were filled with nanosized ceramic particles. Because the electrolyte remains a flexible, soft, solid material, battery manufacturers will be able to manufacture rolls of lithium foils with the electrolyte as a laminate between the anode and the battery separator. These lithium-electrode sub-assemblies, or LESAs, are attractive drop-in replacements for the conventional graphite anode, allowing battery manufacturers to use their existing assembly lines, Helms said.

To demonstrate the dendrite-suppressing features of the new PIM composite electrolyte, the Helms team used X-rays at Berkeley Lab’s Advanced Light Source to create 3D images of the interface between lithium metal and the electrolyte, and to visualize lithium plating and stripping for up to 16 hours at high current. Continuously smooth growth of lithium was observed when the new PIM composite electrolyte was present, while in its absence the interface showed telltale signs of the early stages of dendritic growth.

These and other data confirmed predictions from a new physical model for electrodeposition of lithium metal, which takes into account both chemical and mechanical characteristics of the solid electrolytes.

“In 2017, when the conventional wisdom was that you need a hard electrolyte, we proposed that a new dendrite suppression mechanism is possible with a soft solid electrolyte,” said co-author Venkat Viswanathan, an associate professor of mechanical engineering and faculty fellow at Scott Institute for Energy Innovation at Carnegie Mellon University who led the theoretical studies for the work. “It is amazing to find a material realization of this approach with PIM composites.”

An awardee under the Advanced Research Projects Agency-Energy’s (ARPA-E) IONICS program, 24M Technologies, has integrated these materials into larger format batteries for both EVs and electric vertical takeoff and landing aircraft, or eVTOL.

“While there are unique power requirements for EVs and eVTOLs, the PIM composite solid electrolyte technology appears to be versatile and enabling at high power,” said Helms.

Researchers from Berkeley Lab and Carnegie Mellon University participated in the study.

The Molecular Foundry and Advanced Light Source are DOE Office of Science user facilities co-located at Berkeley Lab.

This work was supported by the Advanced Research Projects Agency–Energy (ARPA-E) and the DOE Office of Science. Additional funding was provided by the DOE Office of Workforce Development for Teachers and Scientists, which enabled undergraduate students to participate in the research through the Science Undergraduate Laboratory Internships program.

Tags:  Battery  Brett Helms  Graphene  graphite  Lawrence Berkeley National Laboratory 

Share |
PermalinkComments (0)
 

EU demand leads to Talga expanding battery plant

Posted By Graphene Council, Friday, June 26, 2020
Overwhelming European demand sees Australia’s battery anode company Talga Resources plan for expanded output at its new Swedish battery anode factory.

Expressions of interest received for Talga’s lithium-ion battery anode products exceed 300% of planned annual capacity of the Vittangi Anode Project, the company says.

Talnode products are now in 36 active commercial engagements covering the majority of planned European li-ion battery manufacturers and six major global automotive OEMs.

Talga says it’s expanding the scale of the Niska scoping study for the Vittangi Project to review larger anode production options as a result of this significant interest.

Li-ion battery megafactories are set to require more than 2.5 million tonnes per annum (tpa) active anode material by 2029, up from about 450,000 tpa anode production today, with Europe the fastest growing market.

That’s because worldwide li-ion battery demand continues to rapidly increase, with global battery manufacturing capacity set to exceed 2.5 tera-Watt hours (TWh) per annum by 2029 across 142 battery plants.

“Our engagement with European battery companies and automotive OEMs has grown rapidly, with customers attracted by the potential of locally produced anode at competitive costs and with world-leading sustainability,” Talga managing director Mark Thompson says.

”As we progress Talnode-C through commercial qualification stages with customers it is pleasing to note that interest now greatly exceeds our original planned production, and that the need to review expansion options has arisen this early.”

The increased interest means the company is targeting completion of the Niska scoping study in Q3 2020.

While COVID-19 has severely impacted EV sales in the short term, Bloomberg New Energy Finance data shows EV sales hold up better than internal combustion engine (ICE) vehicles due to new (lower cost) models and supportive government policies.

In the quarters prior to the COVID-19 outbreak, EV sales as a percentage of total passenger vehicles rose rapidly in the EU, with Germany and France recording increases of 100% during the period.

Numerous countries across Europe have implemented some form of financial incentives towards customer uptake of EVs, and post COVID-19 these have increased markedly in some countries.

Talga is entering the European market at a time when 100% of anode supply is still sourced from Asia. The company’s marketing team reports that, post COVID-19, localisation is becoming an increasingly significant factor influencing customer’s purchasing decisions.

Tags:  Battery  Graphene  Li-ion batteries  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 

Gridtential Energy and LOLC Advanced Technologies Team up on New Bipolar Battery Technology

Posted By Graphene Council, Wednesday, June 24, 2020
Gridtential Energy, the inventor and developer of Silicon Joule™ bipolar battery technology and LOLC Advanced Technologies, the research and advanced technology arm of LOLC Group announce that they have entered into a technology evaluation agreement.

Under the agreement, over the next few months, LOLC Advanced Technologies and Gridtential Energy will collaborate on prototyping lead batteries with the combined advantages of Silicon Joule™ bipolar silicon plates and AltaLABGX, the Graphene battery additive applied to active materials, supplied by Ceylon Graphene Technologies, CGT (a joint venture between the LOLC Group and Sri Lanka Institute of Nanotechnology (SLINTEC). Preliminary work indicates that the combination of these elements will lead to higher performing batteries in energy density, charging rates and cycle life.

Silicon Joule™ bipolar technology has created an innovative class of lead batteries with silicon at its core. It is a design driven, low cost, high performance, patented energy storage solution that provides improved power density, cycle life, dynamic charge acceptance and temperature range, with up to 40% lower weight, while retaining full lead-battery recyclability. This is all accomplished while leveraging existing technologies from mature industry supply chains – allowing rapid adoption of existing lead-battery infrastructure.

"We are pleased to be working with LOLC Advanced Technologies and Ceylon Graphene Technologies, leaders in battery manufacturing solutions and graphene battery additives respectively. We expect that leveraging leading-edge electro chemistry with our highly efficient Silicon Joule bipolar design will produce industry leading performance with significantly lower weight," said Gridtential Energy CEO, John Barton. "Whether it is longer cycle-life or greater charge/discharge performance, Gridtential is changing the way that OEMs in automotive, 5G telecom, and stationary power markets think about high-performance, low-cost, safe energy storage.

"Every day, we are making it easier to leap into the Silicon Joule Technology future. Whether it is through our rapid prototyping development kits, off-the-shelf reference batteries, equipment manufacturing partners, and now additive experts, the adoption ecosystem has never been stronger. We are pleased that more and more battery manufacturing companies are taking advantage of our technology - now with Graphene battery additive - to produce lead-based products that can compete with lithium. We are quite confident that first movers will be richly rewarded with commercial success."

With Silicon Joule™ bipolar battery technology from Gridtential Energy, that combines the benefits of lead batteries with silicon-enabled, high performance characteristics, battery manufactures world-wide, will be prepared to meet the challenge.

"Worldwide demand is increasing for superior energy storage systems at the edge and driving innovation. LOLC Advanced Technologies with Ceylon Graphene Technologies are improving battery electro-chemistry with our pure graphene and our advanced manufacturing expertise. Partnering with Gridtential's Silicon Joule bipolar solution will lead the advancements in safe, reliable and higher performing lead batteries," said, Chairman Ishara Nanayakkara, LOLC Group

Tags:  Batteries  Battery  Ceylon Graphene Technologies  Energy Storage  Graphene  Gridtential Energy  Ishara Nanayakkara  John Barton  LOLC Group 

Share |
PermalinkComments (0)
 
Page 1 of 3
1  |  2  |  3