Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Batteries  nanomaterials  University of Manchester  CVD  First Graphene  electronics  Li-ion batteries  coatings  graphene oxide  graphene production  The Graphene Flagship  Applied Graphene Materials  Carbon Nanotubes  composites  Energy Storage  Graphite  Haydale  Graphene Flagship  Healthcare  3D Printing  Battery  optoelectronics  polymers  Versarien  Adrian Potts  Andre Geim  biosensors 

Grolltex Graphene Closes Oversubscribed Private Placement Financing Round

Posted By Graphene Council, The Graphene Council, Wednesday, September 11, 2019
Updated: Tuesday, September 10, 2019

Grolltex (named for ‘graphene-rolling-technologies’) is the largest commercial producer of single layer, ‘electronics grade’ graphene and graphene sensing materials in the U.S. They have announced that it has closed a non-brokered, oversubscribed private placement financing, in the form of a convertible note, with local area private investors. 

The gross proceeds of the private placement will be used for general working capital purposes and for increasing the capacity and quality testing capabilities of the company’s production facility in San Diego, California.


The company is focused on delivering inexpensive and enabling solutions to advanced nano-device and graphene sensor makers by fabricating the highest quality single layer graphene attainable, via chemical vapor deposition (or ‘CVD’).

The company is now capable of producing monolayer graphene sensors on large area plastic sheets at a cost of pennies per unit, in a high throughput and sustainable way.  Further, Grolltex is helping customers that currently produce their graphene sensors on silicon wafers, to transition that production capacity to making their sensors on large area sheets of biodegradable plastic instead, at a >100X cost savings. 

Monolayer graphene films are today seen as the most promising futuristic sensing materials for their combination of surface to volume ratio (the film is only one atom thick) and conductivity (the most conductive substance known at room temperature). Markets that are commercializing advanced sensors made of graphene include DNA sensing and editing, new drug discovery and wearable bio-monitors for glucose sensing and autonomous blood pressure monitoring via patches or watch-like wearable bracelet devices.

No securities were issued and no cash was paid as bonuses, finders’ fees, compensation or commissions in connection with the private placement.

Tags:  Biosensor  CVD  Graphene  Groltex  Sensors 

Share |
PermalinkComments (0)
 

Cardea Bio Announces New Partnership with Nanosens Innovations

Posted By Graphene Council, The Graphene Council, Friday, April 5, 2019
Updated: Thursday, April 4, 2019
Cardea Bio, leading manufacturer of commercial-quality graphene digital biosensors, together with Nanosens Innovations, introduces the new CRISPR-Chip which has the potential to detect genetic mutations within minutes. The relationship with Nanosens falls under Cardea's Innovation Partnership Program, which enables Nanosens to build breakthrough science on top of Cardea's IP-protected graphene biosensors.

The co-developed CRISPR-Chip is the first unamplified label-free nucleic acid testing device. Details about its development can be found in the recently published Nature Biomedical Engineering paper, "Detection of Unamplified Target Genes via CRISPR/Cas9 Immobilized on a Graphene Field-Effect Transistor," from the Keck Graduate Institute at Claremont College.

CRISPR-Chip inventor and corresponding author Dr. Kiana Aran explains, "I first considered using CRISPR-Cas9 on a digital biosensor as a DNA search engine while I was at UC Berkeley. At Keck, I attempted to design and develop the biosensors myself, but it was difficult to construct them with the consistency and quality needed for this research. When I understood that a partnership with Cardea was possible, where the company's patented, commercial-grade, high-volume graphene biosensors could be used in place of building my own, it cut months to years out of my research."

CRISPR-Chip is a hand-held device that combines thousands of CRISPR molecules with Cardea's graphene transistor. The device scans though applied DNA to find specific genes or mutations. The transistor is extremely sensitive to electrically charged materials, like DNA. If the specified DNA is found, it binds to the surface, creating an additional charge which is sensed by the device.

"In its current format, CRISPR-Chip can be used to help researchers design better CRISPR complexes for gene editing," continues Dr. Aran. "With CRISPR-Chip, the complexes can be tested faster than ever before."

Tags:  Biosensor  Cardea Bio  DNA  Graphene  Keck Graduate Institute at Claremont College  Kiana Aran  Nanosens Innovations 

Share |
PermalinkComments (0)
 

Grolltex Drives Dramatic Increase of Single Layer CVD Graphene Production

Posted By Graphene Council, The Graphene Council, Monday, February 25, 2019
Updated: Monday, February 25, 2019

Graphene and 2D materials producer,Grolltex has completed its recent capacity expansion and released production for 30,000 eight-inch wafer equivalents per year at its CVD monolayer fabrication facility in San Diego, California. This ‘single atomic layer’ type of graphene is used in advanced electronics and other nano-devices and supports many use cases in wearables, IoT, photonics, semiconductors, biosensing and other next generation devices.

“This is the only commercial CVD monolayergraphene production facility in California and in fact it is the largest capacity plant of its kind in the U.S.”, said CEO, Jeff Draa. “Demand for our electronics grade graphene has never been better.  Our production lines are capable of producing single layer graphene or single layer hexagonal Boron Nitride”.
Otherwise known as ‘white graphene’, hexagonal Boron Nitride (or ‘hBN’) is the single atom thick insulator complement to graphene, which is a conductor.  The material hBN also has many other interesting characteristics, including being highly transparent, very strong, possesses anti-microbial and flame-retardantproperties and is additionally a performance accelerator for graphene.  The Grolltex factory expansion supports the growth, production and transfer of both of thesesingle layer materials.

“Maybe even more exciting, we currently have four active evaluations where our customers’advanced nano-factories are testing our graphene for use as the basis for their final devices and each factory eval is going very well”, said Draa.  “The biosensing area is an early adopter for our graphene, as evidenced by customers using our material to detect DNA, find diseases in blood, monitor glucose in sweat in the form of a wearable patch and validating the safety and efficacy of new drugs in previously unthinkably short times and low costs.”

Grolltex, short for ‘graphene-rolling-technologies’, makes large area, single atom thick graphene sheets using chemical vapor deposition or ‘CVD’; essentially the process is depositing gas in a chamber, then allowing it to cool, which leaves a continuous one atom thick layer of carbon on a target substrate.  This type of graphene is highly valued for its electrical characteristics, strength and flexibility and some see it as‘next generation silicon’.

The company uses patented research and techniques initially developed at the University of California, San Diego, to produce high quality, single layer graphene, hexagonal Boron Nitride and other 2D materials and products.  The company is a practitioner of, and specializes in, exclusively sustainable graphene production methods and is committed to advancing the field of graphene to improve the future of leading-edge materials science and product design through the optimization of single atom thick materials.

Tags:  Biosensor  CVD  Graphene  Grolltex  Jeff Draa  Sensors 

Share |
PermalinkComments (0)
 

Graphene enables a test for cancer that is faster, more accurate and less expensive!

Posted By Terrance Barkan, Monday, October 16, 2017

An international team of researchers led by Professor Steven Conlan, Swansea University Medical School and the Centre for NanoHealth has won an international award for a graphene biosensor based diagnostic test for ovarian cancer which is quicker, more accurate, less expensive and portable.

The team developed a testing device which can diagnose ovarian cancer in a few minutes using a drop of blood. This portable technology is different from the ones currently in the hospital environment and allows for greater flexibility in terms of monitoring a patient even after she has already been diagnosed with ovarian cancer.

As well as the test being simple and fast the test does not require a technically-developed laboratory or a specialized technician to operate it which reduces costs and means that there isn’t a need for a centralisation of services. The device can also be used with other biomarkers to detect other types of disease.

Ovarian cancer research award ‌Professor Conlan, together with colleagues Dr Sofia Teixeira (Swansea University College of Engineering), Drs Lewis Francis, Deya Gonzalez and Lavinia Margarit (from the Swansea University Medical School), and Dr Ines Pinto from the International Iberian Nanotechnology Laboratory, INL, Braga, Portugal have been recognised for their pioneering work with the award of the i3S Hovine Capital Health Innovation prize.
 
Professor Conlan said: “The Hovione prize will allow the team to initiate the process of moving our device from the lab to the patient. Whilst there is much work to be done, this is an important step towards the better and earlier diagnosis of patients with ovarian cancer. Cooperation between the two European centres has been key in realising this achievement.”

i3S Hovine Capital Health Innovation prize, created this year, aims at distinguishing innovative ideas in the area of health. The winners of the grand prize receive €35,000 in financing and services that include a market study, development of a business plan, technology validation by industrial experts, and support in setting up a company based on the winning technology.

The i3S-Hovione Capital Health Innovation Prize is supported internationally by the European Institute of Innovation and Technology (EIT-Health) and has partnerships with several entities, such as Bluecinical (PT), Patentree (PT), SRS Advogados (PT), Impact Science (UK), and ANI / MCTES (PT) through its Bfk Award.

Tags:  Biosensor  Cancer  Graphene  Healthcare  Medical 

Share |
PermalinkComments (0)