Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Nanomaterials  Electronics  University of Manchester  Batteries  Graphene Flagship  graphene oxide  Semiconductor  coatings  First Graphene  Graphite  Healthcare  CVD  Li-ion batteries  energy storage  carbon nanotubes  composites  optoelectronics  Versarien  Applied Graphene Materials  Battery  graphene production  nanoelectronics  photonics  The Graphene Flagship  Medical  polymers  Haydale 

MITO Material Solutions To Present at Industry Events and Conferences

Posted By Graphene Council, Monday, February 24, 2020
MITO Materials, creator of hybrid polymer modifiers that increase the durability, flexibility, and performance of polymer composites, is announcing that the Company will take part three different industry conferences and events this Spring.

Since participating in The Heritage Group accelerator powered by Techstars in Indianapolis, IN, MITO Materials has seen a significant increase in customer on boarding for product integration into various fiber-reinforced thermoset and thermoplastic components as well as graphene-enhanced coatings. Performance data from these customers indicate that MITO’s products could extend the limitations and improve recyclability of materials used in high performance applications.

Caio Lo Sardo, Head of Business Development, says, “We are committed to engaging with customers pushing the boundaries with their current offerings to offer a better tomorrow, together.Our product offerings will further enable formulators and manufacturers to make their fiber-reinforced thermosets and thermoplastics a more viable, higher performing option.

MITO Materials will take part in six leading international industry events:

• JEC World 2020, based in Paris, France (3-5 March 2020)
• Open Minds (19-21 March 2020)
• The American Coatings Show, based in Indianapolis (30 March – 02 April 2020)
• Bicentennial Sponsored Conference: Beyond Boundaries: Indiana Academies Symposium (3-4 April 2020)
• World Adhesives Conference (20-22 April 2020)
• SAMPE 2020, based in Seattle (4-7 May 2020), Dr. Bhishma Sedai will be presenting a technology paper at this event.

Tags:  Caio Lo Sardo  coatings  Graphene  MITO Material Solutions  Plastics  Polymer 

Share |
PermalinkComments (0)
 

Graphene Gives Aluminum-Based Explosives More Bang for the Buck

Posted By Graphene Council, Monday, February 24, 2020
Researchers from the U.S. Army have discovered a new way to get more energy out of energetic materials containing aluminum: by coating them with graphene oxide.

This discovery coincides with the one of the Army’s modernization priorities: Long Range Precision Fires. The new fining could lead to more energetic metal powders as propellant/explosive ingredients in Army munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It’s also the most conductive and transparent, and the most expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops via light-emitting diode and organic light-emitting diode LCDs and OLED displays. But oxidizing graphite makes graphene oxide (GO) much less expensive to make.

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (uAl)—i.e., aluminum particles one millionth of a meter in diameter. This new work signals the Army beginning to develop better metal propellant/explosive ingredients to protect more lives for the Army warfighters.

"Aluminum (Al) can theoretically release a large quantity of heat (as much as 31 kilojoules per gram) and is relatively cheap due to its natural abundance,” says Chi-Chin Wu of the Army Research Lab. “µAl powders have been widely used in energetic applications.

“However, it is difficult to ignite them using an optical flash lamp due to its poor light absorption,” Wu continues. “To improve its light absorption during ignition, it is often mixed with heavy metallic oxides which decrease the energetic performance.”

Nanometer-sized Al powders (i.e., one billionth of a meter in diameter) can be ignited more easily by a wide-area optical flash lamp , and they release heat much faster than can be achieved using conventional single-point methods such as hotwire ignition. Unfortunately, nanometer-sized Al powders are costly. The team did, however, demonstrate the value of uAl/GO composites as potential propellant/explosive ingredients. It showed that GO lets of uAl via an optical flash lamp, releasing more energy at a faster rate—thus significantly improving the energetic performance of µAl beyond that of the more expensive nanometer-sized Al powder. The team also discovered that the ignition and combustion of µAl powders can be controlled by varying the GO content to get the desired energy output.

Images showing the structure of the µAl/GO composite particles were obtained by high resolution transmission electron (TEM) microscopy. “It is exciting to see through advanced microscopy how a simple mechanical mixing process can wrap µAl particles in a GO sheet,” says Wu.

The researchers also discovered that GO increased the amount of µAl reacting in the microsecond timescale—a regime analogous to the release of explosive energy during a detonation.

Upon initiation of the uAl/GO composite with a pulsed laser using a technique called laser-induced air shock from energetic materials (LASEM), the exothermic reactions of the µAl/GO accelerated the resulting laser-induced shock velocity beyond that of pure µAl or pure GO. So µAl/GO composite can increase the power of military explosives, as well as enhance the combustion and blast effects. This could, therefore , lead to longer range and/or more lethal weapons.

Tags:  Army Research Lab  Chi-Chin Wu  coatings  composites  Graphene  graphene oxide 

Share |
PermalinkComments (0)
 

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate

Posted By Graphene Council, Saturday, February 22, 2020
Copper has been essential to human technology since its early days--it was even used to make tools and weapons in ancient times. It is widely used even today, especially in electronic devices that require wiring. But, a challenge with using copper is that its surface oxidizes over time, even under ambient conditions, ultimately leading to its corrosion. And thus, finding a long-term method to protect the exposed surfaces of copper is a valuable goal. One common way of protecting metal surfaces is by coating them with anti-corrosive substances. Graphene is studied extensively as a candidate for anti-corrosive coating, as it serves as a barrier to gas molecules. But, despite these properties, graphene sheets are seen to protect copper from corrosion only over short periods (less than 24 hours). In fact, surprisingly, after this initial period, graphene appears to increase the rate of copper corrosion, which is completely in contrast to its anti-corrosive nature.

To shed light on the peculiar nature of graphene seen in copper, a research team from Chung-Ang University, Korea, led by Prof Hyungbin Son, studied graphene islands on a copper substrate to analyze the patterns of its corrosion. Prof Son explains, "Graphene is known to be mechanically very strong and impermeable to all gases, including hydrogen. Following studies claiming that the corrosion of copper substrates was accelerated under graphene through various defects, these properties have attracted great attention as an oxidation barrier for metals and have been controversial for over a decade. However, they have not been qualitatively investigated over longer time scales. Thus, we were motivated to study the role of graphene as a corrosion-resistant film at the graphene-copper interface." Prof Son and his team used Raman spectroscopy, scanning electron microscopy, and white light interferometry to observe the trends in copper corrosion for 30 days.

At first, the team detected corrosion developing at the edges, spreading the oxidized form of copper, copper oxide (Cu2O), at various defects such as edges, grain boundaries, and missing atoms. This resulted in the splitting of water vapor, supplying oxygen for the oxidation process, until the entire barrier seemed to be rendered useless and copper was fully corroded underneath. Owing to graphene's effect on ambient water vapor, the protected portion of the copper substrate was more corroded than the unprotected portion. Over time, the formation of Cu2O underneath the graphene sheet dispersed the strain and caused p-doping in graphene--creating a hybrid-like structure. But, after 13 days of exposure to ambient conditions, the team discovered something new. They observed that that the corrosion had significantly slowed down where a new hybrid of graphene and Cu2O layer had formed. Meanwhile, the unprotected copper continued to corrode at a consistent rate, until it had penetrated far deeper than the corrosion under the graphene shield.

These findings show that graphene, in fact, protects copper from deep, penetrating oxidation, unlike what previous studies had concluded. Prof Son explained, "We observed that over a longer time scale (more than 1 year), the graphene-Cu2O hybrid structure became a protective layer against oxidation. The area beyond the graphene was heavily oxidized with CuO, with a depth of ?270 nm."

This study has finally managed to settle the debate on whether graphene can be used to protect copper against oxidation. Prof Son concludes, "For nearly a decade, graphene's anti-corrosive properties have been controversial, with many studies suggesting that graphene accelerates the oxidation of copper (resulting in its corrosion). We have shown for the first time that the graphene-Cu2O hybrid structure, which forms over a long period, significantly slows down the oxidation of copper in the long term, as compared to bare copper."

Only time will reveal more about further applications of graphene as an anti-corrosive material. But one thing is certain--this research has potentially taken down several barriers in using graphene to extend the life of copper.

Tags:  Chung-Ang University  coatings  Corrosion  Graphene  graphene oxide  Hyungbin Son 

Share |
PermalinkComments (0)
 

AGM to present at international coatings conferences

Posted By Graphene Council, Saturday, February 8, 2020

Applied Graphene Materials, the specialty producer of graphene materials, announces that the Company will present to the global paints and coatings industry at five international conferences this spring.

Over the last 12 months, the Company has seen several customer coatings containing AGM’s graphene dispersion technology reach the consumer market, including Halfords’ graphene-enhanced primer and James Briggs’ Hycote graphene anti-corrosion primer. The Company continues in its commitment to developing customer engagement in the coatings sector by presenting the performance data supporting the application of its proprietary market-leading graphene enhanced coatings technology.

AGM has developed a robust high-volume synthesis production technology for graphene nanoplatelets (A-GNPs). A-GNPs possess unique characteristics that are then tailored into a range of commercial production ready dispersions (Genable® range), which deliver outstanding enhancements to anti-corrosion and general barrier performance, while providing opportunities to further optimise other coating characteristics.

AGM will take part in five leading international industry events, presenting selected
technology papers at the following:

  • Corrosion 2020, based in Houston, Texas (15-19 March 2020)
  • The American Coatings Show, based in Indianapolis (30 March – 02 April 2020)
  • Eurocoat, based in Paris (31 March – 02 April 2020)
  • Paint Expo, based in Karlsruhe, Germany (21-24 April 2020)
  • Surfex, based in Coventry (02-03 June 2020)

Tags:  Applied Graphene Materials  Coatings  Corrosion  Graphene  Halfords  James Briggs  Paint 

Share |
PermalinkComments (0)
 

Talga Completes 2nd Commercial Scale Graphene Coating Trial

Posted By Graphene Council, Wednesday, January 22, 2020
Talga Resources Ltd announced the commencement of a new large scale commercial trial of its Talcoat graphene additive for maritime coatings.

At the core of the Talcoat product is Talga’s new patent-pending graphene functionalization technology in the form of an on-site dispersible powder that can successfully add graphene’s exceptional strength into paint and coatings.

Supported by the same shipowner, Talga has provided its next-generation graphene additive to enhance a primer coating successfully applied over a sizeable area of a second large container ship.

Unlike the first trial, the Talcoat product and the 2-part epoxy-based commercial coating system were supplied separately and mixed on-site by the paint applicators before spray application to the vessel during dry-docking.

The application of the coating was successful in meeting all conditions and standards required for ships of this size, confirming the potential of the Talcoat product as a ready-mix component for on-site incorporation by coating companies or paint applicators alike.

To further test the versatility and compatibility of the Talcoat additive, the trial used a commercial coating system from a world-leading coating supplier different from that used in the first trial.

The ocean-going cargo vessel, of similar size to the initial container ship being approximately 225m long and weighing 33,000 tons, has re-entered service at sea where over the next 12-18 months the test area will be evaluated on the performance boost delivered to the coating system.

“We continue taking graphene out of the lab and into the real world with these large scale coating trials underway on cargo ships," Talga Managing Director Mark Thompson said. "This application joins the other large scale clean technology product verticals we have been developing for several years such as graphene-enhanced concrete, plastics and packaging products.” 

Tags:  Coatings  Graphene  graphene additives  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)
 

Graphene Nanoplatelets: a future role in pipecoating?

Posted By Graphene Council, Tuesday, December 3, 2019
Pipelines constitute a major infrastructure investment frequently carrying materials which in the event of failure can cause significant loss to the owner and serious potential for environmental damage. To fulfil their role pipelines often run long distances either underwater or underground. This physical challenge is often further complicated by the crossing of international borders introducing complex codes and standards of management. Coatings are essential to the protection of pipelines from corrosion and subsequent failure but are themselves subject to degradation by severe abrasion, hydrothermal aging and chemical degradation. These coating systems are typically considered to be passive or active. Passive systems prevent corrosion by blocking key elements of water, oxygen and salts from reaching the pipe surface. Cathodic protection systems (CP) are reactive systems designed to protect pipelines in the event of failure.

Graphene was first produced and identified in 2004 by the group of Andre Geim and Konstantin Novoselev at the University of Manchester, an event which was followed by the Nobel prize for Physics in 2010. One of the remarkable properties of graphene is its impermeability to gases. Graphene manufactured as a single monolayer is time consuming, expensive and difficult to scale. Graphene nanoplatelets (GNPs) offer a cheap and scalable alternative for use in barrier systems. Much research has been carried out on the implementation and use of graphene in coatings including those for pipelines. Direct application of GNP into epoxy has been discussed by Battocchi et al (1) who observed that low level additions of GNP offered improved barrier properties and corrosion mitigation together with improved abrasion resistance. Budd et al(2) applied GNP in laminate structures for flexible risers demonstrating the potential barrier properties of graphene in aggressive conditions. Applied Graphene Materials (AGM) GNPs are manufactured using the company’s patented proprietary “bottom up” process, yielding high specification graphene materials. AGM produce a range of GNP dispersions capable of easy addition into coating systems and have undertaken significant development activity to demonstrate their use in coating systems enabling improved in barrier performance and corrosion resistance.

Corrosion Testing

Current organic coating systems designed for protective coatings applied in harsh environments, such as bridges, are typically comprised of a number of different coating layer, each providing a different set of properties. A basic system usually consists of three layers, which may include a zinc rich primer coat offering sacrificial protection, an intermediate coat and a final topcoat for environmental protection. Typical dry film thicknesses of these coats is around 50 to 150 µm for the primer and intermediate coat and 50 µm for the top coat. Recently it has been demonstrated that GNPs, both as prepared and chemically functionalised, when incorporated into an organic coating system or host matrix, provide via a highly tortuous path which acts to impede the movement of corrosive species towards the metal surface (Okafor et al[3) ) creating a passive corrosion protection mechanism. In support of this, previous work by Choi et al (4) has also shown that very small additions of GNPs decreased water vapour transmission rates indicating a barrier type property, while some authors Aneja et al(5) also report an electrochemical activity provided by graphene within coatings. The introduction of GNPsinto the intermediate coat has recently been demonstrated by AGM(6) to increase significantly the impedance of a protective coating system as measured by EIS when studied in conjunction with Neutral Salt Spray testing (ASTM B117). The intermediate epoxy was formulated as shown below in Table 1.

Three different GNP-containing variants of the control were prepared (D1-D3) using the same initial preparation route as for the epoxy prototype base, by substituting commercially available GNPcontaining dispersion additives (formulation component 10) for epoxy in the final step (formulation component 9). The GNP dispersion additives were effectively treated as masterbatches, and were added in varying amounts according to their graphene content and the final GNP content specified in the end coating (Table 1). The dispersion used in the preparation of D1 and D3 contained a reduced graphene oxide type GNPs (A-GNP10). The dispersions used in the preparation of D2 contained GNPs of a ‘crumpled sheet’ type morphology with a relatively low density and high surface area (A-GNP35). In addition, dispersion D3 based on A-GNP10 contained an active corrosion inhibitor.

Prior to coating application, all substrates were degreased using acetone. Each first coat was applied to grit blasted mild steel CR4 grade panels (Impress North East Ltd.), of dimensions 150 x 100 x 2mm, by means of a gravity fed conventional spray gun. The over coating interval was 3 hours with all panels permitted a final curing period of 7 days at 23°C (+/-2°C). Dry film thickness of the prepared coatings were in the range of 50-60 microns for single coat samples and 150-160 microns for multi coat samples. Full details of the coating systems prepared can be seen in Table 2. All substrates were backed and edged prior to testing.

The panels were placed in a Neutral Salt Spray corrosion chamber, running ISO 9227 for a period of up to 1440 hours. This test method consists of a continuous salt spray mist at a temperature of 35°C. Panels were assessed at 10 day (240 hour intervals) for signs of blistering, corrosion, and corrosion creep in accordance with ISO4628. These assessments were complimented with electrochemical measurements, carried out at the same intervals. All electrochemical measurements were recorded using a Gamry 1000E potentiostat in conjunction with a Gamry ECM8 multiplexer to permit the concurrent testing of up to 8 samples per run. Each individual channel was connected to a Gamry PCT1 paint test cell, specifically designed for the electrochemical testing of coated metal substrates.

Figure 1 shows the progression of impedance modulus for the three coat system samples, measured at 0.1 Hz, over the time period during which the samples were subjected to NSS conditions. Initial impedance values (recorded at t=0) range from the orders of 108 to 1010 Ω.cm2 . The control sample, consisting of a zinc rich primer coat, a layer of commercial equivalent epoxy and polyurethane topcoat, displays the lowest overall impedance values in addition to one of the higher rates of decrease of impedance from the t=0 point. When GNPs are introduced to the intermediate layer, the impedance modulus is increased suggesting that the inclusion of GNPs is acting to increase the barrier performance properties of the system as a whole. The incorporation of A-GNP35 into D2 gave a final system uplift of 5 orders of magnitude above the control. Throughout the testing the D2 formulation showed little change in impedance, compared to the other samples. The achievement of >109 Ohm.cm2 @ 0.1Hz over a period of 1440 hours in neutral salt spray outperformed existing technology in barrier performance equating to a C5 high rating for salt spray performance according to ISO12944-1.

The choice of coating system for pipelines is typically influenced by the geographical region and is often made between thick or thin film build. Critical requirements of coatings in either case are:

• Excellent adhesion

• Low permeability

• Resistance to cathodic disbondment

• High electrical resistance

Thin build coating systems are typically based on Fusion Bonded Epoxy (FBE) either single or double layer being the preferred approach in the North American market. Alternatives might also include high build epoxy or polyurethane. Typically such thin build systems utilise an active CP system to provide additional corrosion protection. Graphene modification as shown by Battochi(1) and by AGM(6) might easily be incorporated into such epoxy or polyurethane systems through the use of AGM’s dispersions. The known electrical conductivity of Graphene might give cause for concern if the incorporation changes the insulating characteristics of the film. The GNP modification demonstrated by AGM is however substantially below the percolation threshold required for conductivity and the net impact on epoxy conductivity is considered negligible (Figure 2).

Thick build coating systems used in other parts of the world are typically 3 layer polyolefin (3LPO and might be polyethylene or polypropylene). AGM has experience in master-batching Graphene into thermoplastics and as such there is no obstacle to the introduction of GNPs into of the main body of the coating. GNP might also be introduced into the adhesive copolymer layer applied to the FBE typically used as a base for the 3LPO coating system.

Tags:  Andre Geim  Applied Graphene Materials  Coatings  Graphene  hydrothermal  Konstantin Novoselev  Nanoplatelets  Pipelines  Pipes  University of Manchester 

Share |
PermalinkComments (2)
 

XG Sciences and Terrafilum Enter Joint Development Agreement to Produce Graphene Enhanced 3D Printing Filament

Posted By Graphene Council, Tuesday, October 29, 2019
XG Sciences, Inc. a market leader in the design and manufacture of graphene nanoplatelets and advanced materials containing graphene nanoplatelets, and Terrafilum®, an eco-friendly, high quality filament producer for the 3D printing industry, today announced a joint venture agreement to develop, produce and market 3D printing filaments and coatings using graphene-based materials.
 
First isolated and characterized in 2004, graphene is a single layer of carbon atoms configured in an atomic-scale honeycomb lattice. Among many noted properties, monolayer graphene is harder than diamonds, lighter than steel but significantly stronger, and conducts electricity better than copper. Graphene nanoplatelets are particles consisting of multiple layers of graphene. 

Graphene nanoplatelets have unique capabilities for energy storage, thermal conductivity, electrical conductivity, barrier properties, lubricity and the ability to impart physical property improvements when incorporated into plastics, metals or other matrices.

Chris Jackson, President of Terrafilum, points out, “The full potential for 3D printing is starting to be unlocked. The addition of XG’s graphene formulations into our eco-friendly filaments will transform products allowing a greater variety of parts to be created at faster production rates using less energy.”

3D printing has been great for prototyping and limited run production parts, but companies have been challenged to move into high volume production due to material limitations such as direction specific structural weaknesses, a lack of conductivity, a sparse selection of ESD robust filaments, an overall lack of part performance and slow production times.
 
Graphene-enhanced filaments help solve product related problems, historically associated with FDM (Fused Deposition Modeling) printing, by enhancing z-direction strength, providing more ESD robust parts and creating overall lighter parts in less time. 
 
“Marrying together well-established 3D printing technologies with our graphene-enhanced formulations makes the material difference in resolving the two most limiting factors in 3D printed parts, product strength and processing speeds,” said Dr. Leroy Magwood, Chief Technologist for XG Sciences.

Tags:  3D Printing  Chris Jackson  coatings  Graphene  Leroy Magwood  Terrafilum  XG Sciences 

Share |
PermalinkComments (0)
 

Nano-enhanced Boots Successfully Passed Safety Tests

Posted By Graphene Council, Monday, October 14, 2019
Updated: Tuesday, October 15, 2019
First Graphene, in collaboration with Steel Blue, has successfully completed safety tests for graphene-enhanced boots which will be used in various industrial sectors. This is the first time that graphene has been used successfully in thermoplastic polyurethane masterbatch, which presents considerable benefits including improved wear and chemical resistance, enhanced heat transfer, and reduced permeability.

This is the first time that graphene has successfully been incorporated into a thermoplastic polyurethane masterbatch and offers considerable advantages, including even greater wear and chemical resistance, better thermal heat transfer and reduced permeability.

Steel Blue is a major global manufacturer of work boots, with a reputation for innovative design to improve comfort, durability and safety. The adoption of graphene to boost these features still further is a continuation of this philosophy, as Chief Executive Officer, Garry Johnson, explains, “Steel Blue is committed to developing innovative solutions for our customers. We’re excited by these recent developments with First Graphene and look forward to delivering these solutions to our market.”

The prototype boots have been manufactured using First Graphene’s PureGRAPH 10 graphene powder. Unlike competing formulations, this is available in high production volumes with non-aggregated, uniform sized graphene nanoplatelets; this ensures that it disperses evenly in thermoplastic polyurethane (TPU) masterbatches.

The prototype boots incorporate PureGRAPH-infused TPU soles and polyurethane foam innersoles and will now undergo extensive laboratory testing, followed by field trials. Craig McGuckin, Managing Director for First Graphene said, “The development work with Steel Blue provides yet another example of how we’re working with customers to commercialise the development of graphene, to transform the properties of materials used in many different applications, from elastomers and composites, to concrete and specialised industrial coatings.”

Tags:  coatings  composites  Craig McGuckin  First Graphene  Garry Johnson  Graphene  graphene enhanced polymer  Steel Blue 

Share |
PermalinkComments (0)
 

AGM at the Western Coatings Show 2019

Posted By Graphene Council, Wednesday, September 18, 2019
Applied Graphene Materials are exhibiting at Western Coatings Show in Las Vegas, on 20-23 October 2019.

At the show AGM will be promoting their Genable® range which delivers outstanding enhancements to anti-corrosion and barrier performance, while providing opportunities to further optimise other coating characteristics. AGM will soon be promoting a new addition to the Genable® range.

Andy Gent will be giving a presentation titled: Corrosion: Meeting Tomorrows Performance Needs with Graphene Nano-Platelets.

John Willhite and Adrian Potts will also be at stand 332 to answer any questions you may have. You can contact them on +44 (0)1642 438214, or, by e-mail at info@appliedgraphenematerials.com.

Tags:  Adrian Potts  Andy Gent  Applied Graphene Materials  coatings  Graphene  John Willhite 

Share |
PermalinkComments (0)
 

AGM advances applications for water based anti-corrosion coatings

Posted By Graphene Council, Thursday, July 18, 2019
Updated: Monday, July 15, 2019

Applied Graphene Materials, the producer of specialty graphene materials, has announced it has achieved significant technological progress (patent pending) on the deployment of graphene into water-based coatings to enhance their barrier properties.

Water-based coating development remains a focus for industry formulators.

This push is driven by the continuing tightening of regulations brought in to lessen the detrimental impact that solvent- based coatings have on both worker health and the environment. As the technology for water-based coatings continues to evolve, one of the key challenges that remains is to significantly improve their anti-corrosion performance. In doing so, this will fully extend their use away from decorative applications into broader industrial protective coatings.

Over recent years AGM has proven the outstanding barrier and anti-corrosion performance gains possible by incorporating graphene into solvent-based coating systems using its Genable® dispersion technology. This has been demonstrated with several commercial products reaching industrial end-user markets. However, effective incorporation of graphene into water-based systems has previously proven more problematic due to interrelated issues around materials compatibility and film formation.

This water-based breakthrough is again based on AGM's platform Genable® technology, a range of master dispersions that are designed to facilitate the easy incorporation of graphene into coating formulations and existing processes. Genable® dispersions are fully scalable industrial products and, based on initial findings, the addition levels required to significantly enhance anti-corrosion performance in water-based systems are low enough to ensure commercial viability, even in light industrial applications.

Adrian Potts, CEO of Applied Graphene Materials, said:
"A key driver for coatings developers to upgrade their product formulations is increasing regulatory pressure to improve the environmental impact and safety of their products. This is why AGM is working to replicate the success we have already achieved with the incorporation of our Genable® products into solvent-based products with its incorporation into water-based products. We are delighted to be able to present significant technological progress to our customers, reaffirming AGM as the leader in the development of cutting-edge graphene applications tailored to add significant value for paints and coatings manufacturers."

While the findings being shared publicly are in a commercial acrylic DTM (Direct-to-Metal) coating, AGM believes that water-based Genable® technology could, with considered formulating, equally well be adopted into epoxy chemistries and likewise into more complex formulated primer systems.



AGM remains the industry leader for graphene exploitation into the global paints and coatings industry, boasting a highly experienced formulations and applications team, supported by a well-equipped product development and characterisation laboratory and production capability for consistent manufacturing.

Tags:  Adrian Potts  Applied Graphene Materials  Coatings  Corrosion  Graphene 

Share |
PermalinkComments (0)
 
Page 1 of 2
1  |  2