Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: Graphene  2D materials  Batteries  Sensors  Li-ion batteries  University of Manchester  CVD  Electronics  First Graphene  graphene production  nanomaterials  graphene oxide  The Graphene Flagship  coatings  graphite  Applied Graphene Materials  Energy Storage  Haydale  Carbon Nanotubes  composites  Andre Geim  Battery  biosensors  Gratomic  Hexagonal boron nitride  optoelectronics  Standards  Versarien  3D Printing  Adrian Potts 

Unconventional phenomena triggered by acoustic waves in 2D materials

Posted By Graphene Council, The Graphene Council, Tuesday, July 30, 2019
Researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS, South Korea), and colleagues have reported a novel phenomenon, called Valley Acoustoelectric Effect, which takes place in 2D materials, similar to graphene. This research is published in Physical Review Letters and brings new insights to the study of valleytronics.

In acoustoelectronics, surface acoustic waves (SAWs) are employed to generate electric currents. In this study, the team of theoretical physicists modelled the propagation of SAWs in emerging 2D materials, such as single-layer molybdenum disulfide (MoS2). SAWs drag MoS2 electrons (and holes), creating an electric current with conventional and unconventional components. The latter consists of two contributions: a warping-based current and a Hall current. The first is direction-dependent, is related to the so-called valleys -- electrons' local energy minima -- and resembles one of the mechanisms that explains photovoltaic effects of 2D materials exposed to light. The second is due to a specific effect (Berry phase) that affects the velocity of these electrons travelling as a group and resulting in intriguing phenomena, such as anomalous and quantum Hall effects.

The team analyzed the properties of the acoustoelectric current, suggesting a way to run and measure the conventional, warping, and Hall currents independently. This allows the simultaneous use of both optical and acoustic techniques to control the propagation of charge carriers in novel 2D materials, creating new logical devices.

The researchers are interested in controlling the physical properties of these ultra-thin systems, in particular those electrons that are free to move in two dimensions, but tightly confined in the third. By curbing the parameters of the electrons, in particular their momentum, spin, and valley, it will be possible to explore technologies beyond silicon electronics. For example, MoS2 has two district valleys, which could be potentially used in the future for bit storage and processing, making it an ideal material to delve into valleytronics.

"Our theory opens a way to manipulate valley transport by acoustic methods, expanding the applicability of valleytronic effects on acoustoelectronic devices," explains Ivan Savenko, leader of the Light-Matter Interaction in Nanostructures Team at PCS.

Tags:  2D materials  Center for Theoretical Physics of Complex Systems  Electronics  Graphene  Institute for Basic Science  Ivan Savenko 

Share |
PermalinkComments (0)
 

Manipulating atoms one at a time with an electron beam

Posted By Graphene Council, The Graphene Council, Thursday, May 30, 2019
Updated: Friday, May 24, 2019

The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.

Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron beam and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of “atomic engineering,” they say.

The advance is described in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.

“We’re using a lot of the tools of nanotechnology,” explains Li, who holds a joint appointment in materials science and engineering. But in the new research, those tools are being used to control processes that are yet an order of magnitude smaller. “The goal is to control one to a few hundred atoms, to control their positions, control their charge state, and control their electronic and nuclear spin states,” he says.

While others have previously manipulated the positions of individual atoms, even creating a neat circle of atoms on a surface, that process involved picking up individual atoms on the needle-like tip of a scanning tunneling microscope and then dropping them in position, a relatively slow mechanical process. The new process manipulates atoms using a relativistic electron beam in a scanning transmission electron microscope (STEM), so it can be fully electronically controlled by magnetic lenses and requires no mechanical moving parts. That makes the process potentially much faster, and thus could lead to practical applications.

Using electronic controls and artificial intelligence, “we think we can eventually manipulate atoms at microsecond timescales,” Li says. “That’s many orders of magnitude faster than we can manipulate them now with mechanical probes. Also, it should be possible to have many electron beams working simultaneously on the same piece of material.”

“This is an exciting new paradigm for atom manipulation,” Susi says.

Computer chips are typically made by “doping” a silicon crystal with other atoms needed to confer specific electrical properties, thus creating “defects’ in the material — regions that do not preserve the perfectly orderly crystalline structure of the silicon. But that process is scattershot, Li explains, so there’s no way of controlling with atomic precision where those dopant atoms go. The new system allows for exact positioning, he says.

The same electron beam can be used for knocking an atom both out of one position and into another, and then “reading” the new position to verify that the atom ended up where it was meant to, Li says. While the positioning is essentially determined by probabilities and is not 100 percent accurate, the ability to determine the actual position makes it possible to select out only those that ended up in the right configuration.

Atomic soccer

The power of the very narrowly focused electron beam, about as wide as an atom, knocks an atom out of its position, and by selecting the exact angle of the beam, the researchers can determine where it is most likely to end up. “We want to use the beam to knock out atoms and essentially to play atomic soccer,” dribbling the atoms across the graphene field to their intended “goal” position, he says.

“Like soccer, it’s not deterministic, but you can control the probabilities,” he says. “Like soccer, you’re always trying to move toward the goal.”

In the team’s experiments, they primarily used phosphorus atoms, a commonly used dopant, in a sheet of graphene, a two-dimensional sheet of carbon atoms arranged in a honeycomb pattern. The phosphorus atoms end up substituting for carbon atoms in parts of that pattern, thus altering the material’s electronic, optical, and other properties in ways that can be predicted if the positions of those atoms are known.

Ultimately, the goal is to move multiple atoms in complex ways. “We hope to use the electron beam to basically move these dopants, so we could make a pyramid, or some defect complex, where we can state precisely where each atom sits,” Li says.

This is the first time electronically distinct dopant atoms have been manipulated in graphene. “Although we’ve worked with silicon impurities before, phosphorus is both potentially more interesting for its electrical and magnetic properties, but as we’ve now discovered, also behaves in surprisingly different ways. Each element may hold new surprises and possibilities,” Susi adds.

The system requires precise control of the beam angle and energy. “Sometimes we have unwanted outcomes if we’re not careful,” he says. For example, sometimes a carbon atom that was intended to stay in position “just leaves,” and sometimes the phosphorus atom gets locked into position in the lattice, and “then no matter how we change the beam angle, we cannot affect its position. We have to find another ball.”

Theoretical framework
In addition to detailed experimental testing and observation of the effects of different angles and positions of the beams and graphene, the team also devised a theoretical basis to predict the effects, called primary knock-on space formalism, that tracks the momentum of the “soccer ball.” “We did these experiments and also gave a theoretical framework on how to control this process,” Li says.

The cascade of effects that results from the initial beam takes place over multiple time scales, Li says, which made the observations and analysis tricky to carry out. The actual initial collision of the relativistic electron (moving at about 45 percent of the speed of light) with an atom takes place on a scale of zeptoseconds — trillionths of a billionth of a second — but the resulting movement and collisions of atoms in the lattice unfolds over time scales of picoseconds or longer — billions of times longer.

Dopant atoms such as phosphorus have a nonzero nuclear spin, which is a key property needed for quantum-based devices because that spin state is easily affected by elements of its environment such as magnetic fields. So the ability to place these atoms precisely, in terms of both position and bonding, could be a key step toward developing quantum information processing or sensing devices, Li says.

“This is an important advance in the field,” says Alex Zettl, a professor of physics at the University of California at Berkeley, who was not involved in this research. “Impurity atoms and defects in a crystal lattice are at the heart of the electronics industry. As solid-state devices get smaller, down to the nanometer size scale, it becomes increasingly important to know precisely where a single impurity atom or defect is located, and what are its atomic surroundings. An extremely challenging goal is having a scalable method to controllably manipulate or place individual atoms in desired locations, as well as predicting accurately what effect that placement will have on device performance.”

Zettl says that these researchers “have made a significant advance toward this goal. They use a moderate energy focused electron beam to coax a desirable rearrangement of atoms, and observe in real-time, at the atomic scale, what they are doing. An elegant theoretical treatise, with impressive predictive power, complements the experiments.”

Besides the leading MIT team, the international collaboration included researchers from the University of Vienna, the University of Chinese Academy of Sciences, Aarhus University in Denmark, National Polytechnical School in Ecuador, Oak Ridge National Laboratory, and Sichuan University in China. The work was supported by the National Science Foundation, the U.S. Army Research Office through MIT’s Institute for Soldier Nanotechnologies, the Austrian Science Fund, the European Research Council, the Danish Council for Independent Research, the Chinese Academy of Sciences, and the U.S. Department of Energy.

Tags:  2D materials  Alex Zettl  Electronics  Graphene  Ju Li  MIT  Toma Susi  University of California at Berkeley  University of Vienna 

Share |
PermalinkComments (0)
 

Graphene and silk make self-healable electronic tattoos

Posted By Graphene Council, The Graphene Council, Tuesday, March 26, 2019
Updated: Tuesday, March 26, 2019
Researchers have designed graphene-based e-tattoos designed to act as biosensors. The sensors can collect data relate to human health, such as skin reactions to medication or to assess the degree of exposure to ultraviolet light.

Considerable research has gone into electronic tattoos (or e-tattoos), as part of the emerging field of or epidermal electronics. These are a thin form of wearable electronics, designed to be fitted to the skin. The aim of these lightweight sensors is to collect physiological data through sensors.

The types of applications of the sensors, from Tsinghua University, include assessing exposure to ultraviolet light to the skin (where the e-tattoos function as dosimeters) and for the collection of ‘vital signs’ to assess overall health or reaction to a particular medication (biosensors).

The use of graphene aids the collection of electric signals and it also imparts material properties to the sensors, allowing them to be bent, pressed, and twisted without any loss to sensors functionality.

The new sensors, developed in China, have shown – via as series of tests – good sensitivity to external stimuli like strain, humidity, and temperature. The basis of the sensor is a material matrix composed of a graphene and silk fibroin combination.

The highly flexible e‐tattoos are manufactured by printing a suspension of graphene, calcium ions and silk fibroin. Through this process the graphene flakes distributed in the matrix form an electrically conductive path. The path is highly responsive to environmental changes and it can detect multi-stimuli.

The e‐tattoo is also capable of self-healing. The tests showed how the tattoo heals after damage by water. This occurs due to the reformation of hydrogen and coordination bonds at the point of any fracture. The healing efficiency was demonstrated to be 100 percent and it take place in less than one second.

The researchers are of the view that the e-tattoos can be used as electrocardiograms, for assessing breathing, and for monitoring temperature changes. This means that the e‐tattoo model could be the basis for a new generation of epidermal electronics.

Commenting on the research, chief scientist Yingying Zhang said: “Based on the superior capabilities of our e-tattoos, we believe that such skin-like devices hold great promise for manufacturing cost-effective artificial skins and wearable electronics.”

Tags:  biosensors  Electronics  Graphene  Healthcare  Tsinghua University  Yingying Zhang 

Share |
PermalinkComments (0)
 

Waterproof graphene electronic circuits

Posted By Graphene Council, The Graphene Council, Thursday, February 14, 2019
Updated: Thursday, February 14, 2019
Water molecules distort the electrical resistance of graphene, but a team of European researchers has discovered that when this two-dimensional material is integrated with the metal of a circuit, contact resistance is not impaired by humidity. This finding will help to develop new sensors –the interface between circuits and the real world– with a significant cost reduction.

The many applications of graphene, an atomically-thin sheet of carbon atoms with extraordinary conductivity and mechanical properties, include the manufacture of sensors. These transform environmental parameters into electrical signals that can be processed and measured with a computer.

Due to their two-dimensional structure, graphene-based sensors are extremely sensitive and promise good performance at low manufacturing cost in the next years.
To achieve this, graphene needs to make efficient electrical contacts when integrated with a conventional electronic circuit. Such proper contacts are crucial in any sensor and significantly affect its performance.

But a problem arises: graphene is sensitive to humidity, to the water molecules in the surrounding air that are adsorbed onto its surface. H2O molecules change the electrical resistance of this carbon material, which introduces a false signal into the sensor.

However, Swedish scientists have found that when graphene binds to the metal of electronic circuits, the contact resistance (the part of a material's total resistance due to imperfect contact at the interface) is not affected by moisture.

“This will make life easier for sensor designers, since they won't have to worry about humidity influencing the contacts, just the influence on the graphene itself,” explains Arne Quellmalz, a PhD student at KTH Royal Institute of Technology (Sweden) and the main researcher of the research.

The study, published in the journal ACS Applied Materials & Interfaces, has been carried out experimentally using graphene together with gold metallization and silica substrates in transmission line model test structures, as well as computer simulations.

“By combining graphene with conventional electronics, you can take advantage of both the unique properties of graphene and the low cost of conventional integrated circuits.” says Quellmalz, “One way of combining these two technologies is to place the graphene on top of finished electronics, rather than depositing the metal on top the graphene sheet.”

As part of the European CO2-DETECT project, the authors are applying this new approach to create the first prototypes of graphene-based sensors. More specifically, the purpose is to measure carbon dioxide (CO2), the main greenhouse gas, by means of optical detection of mid-infrared light and at lower costs than with other technologies.

Tags:  2D materials  Arne Quellmalz  Electronics  Graphene  KTH Royal Institute of Technology 

Share |
PermalinkComments (0)
 

Graphene hits the right note at high frequencies

Posted By Graphene Council, The Graphene Council, Tuesday, January 15, 2019

Graphene holds the potential to deliver a new generation of ultrafast electronic devices. Current silicon technology can achieve clock rates – a measure of how fast devices can switch – of several hundred gigahertz (GHz). Graphene could achieve clock rates up to a thousand times faster, propelling electronics into the terahertz (THz) range. But, until now, graphene’s ability to convert oscillating electromagnetic signals into higher frequency modes has been just a theoretical prediction.


Now researchers from the Helmholtz Zentrum DresdenRossendorf (HZDR) and University of Duisburg-Essen (UDE), in collaboration with the director of the Max Planck Institute for Polymer Research (MPI-P) Mischa Bonn and other researchers, have shown that graphene can covert high frequency gigahertz signals into the terahertz range [Hafez et al., Nature (2018)].

“We have been able to provide the first direct proof of frequency multiplication from gigahertz to terahertz in a graphene monolayer and to generate electronic signals in the terahertz range with remarkable efficiency,” explain Michael Gensch of HZDR and Dmitry Turchinovich of UDE.

Using the novel superconducting accelerator TELBE terahertz radiation source at HZDR’s ELBE Center for High-Power Radiation Sources, the researchers bombarded chemical vapor deposition (CVD)-produced graphene with electromagnetic pulses in the frequency range 300–680 GHz. As previous theoretical calculations have predicted, the results show that graphene is able to convert these pulses into signals with three, five, or seven times the initial frequency, reaching the terahertz range.

“We were not only able to demonstrate a long-predicted effect in graphene experimentally for the first time, but also to understand it quantitatively at the same time,” points out Turchinovich.

By doping the graphene, the researchers created a high proportion of free electrons or a so-called Fermi liquid. When an external oscillating field excites these free electrons, rather like a normal liquid, they heat up and share their energy with surrounding electrons. The hot electrons form a vapor-like state, just like an evaporating liquid. When the hot Fermi vapor phase cools, it returns to its liquid form extremely quickly. The transition back and forth between these vapor and liquid phases in graphene induces a corresponding change in its conductivity. This very rapid oscillation in conductivity drives the frequency multiplication effect.

“In theory, [this] should allow clock rates up to a thousand times faster than today’s silicon-based electronics,” say Gensch and Turchinovich.

The conversion efficiency of graphene is at least 7–18 orders of magnitude more efficient than other electronic materials, the researchers point out. Since the effect has been demonstrated with mass-produced CVD graphene, they believe there are no real obstacles to overcome other than the engineering challenge of integrating graphene into circuits.

“Our discovery is groundbreaking,” says Bonn. “We have demonstrated that carbon-based electronics can operate extremely efficiently at ultrafast rates. Ultrafast hybrid components made of graphene and traditional semiconductors are also now conceivable.”

Nathalie Vermeulen, professor in the Brussels Photonics group (B-PHOT) at Vrije Universiteit Brussel (VUB) in Belgium, agrees that the work is a major breakthrough.

“The nonlinear-optical physics of graphene is an insufficiently understood field, with experimental results often differing from theoretical predictions,” she says. “These new insights, however, shine new light on the nonlinear-optical behavior of graphene in the terahertz regime.”

The researchers’ experimental findings are clearly supported by corresponding theory, Vermeulen adds, which is very convincing.

“It is not often that major advances in fundamental scientific understanding and practical applications go hand in hand, but I believe it is the case here,” she says. “The demonstration of such efficient high-harmonic terahertz generation at room temperature is very powerful and paves the way for concrete application possibilities.”

The advance could extend the functionality of graphene transistors into high-frequency optoelectronic applications and opens up the possibility of similar behavior in other two-dimensional Dirac materials. Marc Dignam of Queen’s University in Canada is also positive about the technological innovations that the demonstration of monolayer graphene’s nonlinear response to terahertz fields could open up.

“The experiments are performed at room temperature in air and, given the relatively short scattering time, it is evident that harmonic generation will occur for relatively moderate field amplitudes, even in samples that are not particularly pristine,” he points out. “This indicates that such harmonic generation could find its way into future devices, once higher-efficiency guiding structures, such as waveguides, are employed.”

He believes that the key to the success of the work is the low-noise, multi-cycle terahertz source (TELBE) used by the researchers. However, Dignam is less convinced by the team’s theoretical explanation of graphene’s nonlinear response. No doubt these exciting results will spur further microscopic theoretical investigations examining carrier dynamics in graphene in more detail.

Tags:  CVD  Electronics  Graphene  graphene production  Terahertz 

Share |
PermalinkComments (0)
 

Grolltex Releases ‘Enhanced Performance Graphene’ for Electronic Devices

Posted By Terrance Barkan, Monday, October 15, 2018

San Diego based graphene and 2D materials producer Grolltex has completed characterization and is releasing for commercial sale a configuration of large area, single layer graphene that exhibits dramatically improved ‘electron mobility’, which translates to better graphene performance.  This ‘heterostructure’ contains a layer or layers of hexagonal Boron Nitride (or ‘hBN’) underneath graphene, enabling enhanced graphene capabilities.  

Grolltex has begun commercial pre-sales to customers of this ‘Enhanced Performance Graphene’ product, which can significantly improve device performance for sensing, transistors, connectivity and other key aspects of nano-devices.  This type of material performance improvement is often a stepping stone for new applications enabling large market growth toward faster, smaller, cheaper and more sensitive silicon-based devices.

“The data back from our large European device partner showed carrier mobility performance improvements starting at 30%, and our internal work shows us that with some configuration adjustments, we can even build on this toward electron mobility improvements in exponential regimes”, said Jeff Draa, Grolltex CEO and co-founder.  “We believe this is going to be incredibly important to many of our customers that build things on silicon”.

The first reason for the improvement of graphene electron mobility performance, when layered on top of hBN on a wafer, is that the underlying layer of hBN, between the wafer and the graphene, planarizes the surface of the silicon wafer and allows graphene to sit on a surface (hBN) far more conducive to graphene electron flow.  

Another reason has to do with the electron interference of the oxide coming out of the underlying Si/SiO2 wafer, if graphene sits directly on top of it.  With the hBN layer between the graphene and the wafer, the negative effect of the oxide from the wafer on graphene electron performance is greatly reduced, allowing a much freer flow of graphene electrons.  Additional advantages are lower processing temperatures and a much stronger adhesion of the graphene layer to the underlying substrate, with hBN present.

“So, when graphene sits on hBN, it performs much closer to the theoretical ‘electron superhighway’ that graphene users expect”, according to Draa. “We have characterized and are selling this heterostructure to our pre-qualified customers in up to 8” (200mm) diameter configurations and can layer hBN and graphene in any combination”. 

“Device designers, especially advanced sensor makers, are really keyed in to electron mobility. There are many variables that affect this and he who can square those away and show dramatic improvements in mobility can help add real, unique and substantial value to device performance”, said Draa. “Next on our characterization list is MoS2, which is an important ‘band-gap’ material that has been missing in 2D offerings.”

Grolltex, short for ‘graphene-rolling-technologies’, uses patented research and techniques initially developed at the University of California, San Diego, to produce high quality, single layer graphene, hexagonal Boron Nitride and other 2D materials and products.  The company is a practitioner of, and specializes in, exclusively sustainable graphene production methods and is committed to advancing the field of graphene to improve the future of leading edge materials science and product design through the optimization of single atom thick materials.

About Grolltex:

Grolltex, Inc., is a nanotechnology materials, products and equipment company focusing on the optimization and advancement of the key monolayer material ‘graphene’ and related 2D materials.  The company holds a number of strategic patents and technological advantages in areas relating to the manufacture of high quality, monolayer ‘CVD’ graphene and hexagonal Boron Nitride as well as on several advanced products made of graphene and 2D materials, such as hyper efficient solar cells, next generation sensors, advanced fuel cells and futuristic super-thin and flexible displays for use in wearables, smart phones and other electronics.  

For complete information, please visit: https://grolltex.com/

 

Media Contact:

Attn: Media Relations, Grolltex, Inc.

10085 Scripps Ranch Court, Suite D

San Diego, CA 92131

support@grolltex.com

Tags:  CVD  Electronics  Graphene  Grolltex  HbN  Jeff Draa 

Share |
PermalinkComments (0)
 

2D Fluidics Pty Ltd created to launch the Vortex Fluidic Device (VFD)

Posted By Terrance Barkan, Friday, June 22, 2018

 

Advanced materials company, First Graphene Limited (“FGR” or “the Company”) (ASX: FGR) is pleased to announce the launch of its 50%-owned associate company, 2D Fluidics Pty Ltd, in collaboration with Flinders University’s newly named Flinders Institute for NanoScale Science and Technology

 

The initial objective of 2D Fluidics will be the commercialisation of the Vortex Fluidic Device (VFD), invented by the Flinders Institute for NanoScale Science and Technology’s Professor Colin Raston. The VFD enables new approaches to producing a wide range of materials such as graphene and sliced carbon nanotubes, with the bonus of not needing to use harsh or toxic chemicals in the manufacturing process (which is required for conventional graphene and shortened carbon nanotube production). 

 

This clean processing breakthrough will also greatly reduce the cost and improve the efficiency of manufacturing these new high quality super-strength carbon materials. The key intellectual property used by 2D Fluidics comprises two patents around the production of carbon nanomaterials, assigned by Flinders University. 

 

2D Fluidics will use the VFD to prepare these materials for commercial sales, which will be used in the plastics industry for applications requiring new composite materials, and by the electronics industry for circuits, supercapacitors and batteries, and for research laboratories around the world.

 

2D Fluidics will also manufacture the VFD, which is expected to become an in-demand state-of-the-art research and teaching tool for thousands of universities worldwide, and should be a strong revenue source for the new company. 

 

Managing Director, Craig McGuckin said “First Graphene is very pleased to be partnering Professor Raston and his team in 2D Fluidics, which promises to open an exciting growth path in the world of advanced materials production. Access to this remarkably versatile invention will complement FGRs position as the leading graphene company at the forefront of the graphene revolution.” 

 

Professor Colin Raston AO FAA, Professor of Clean Technology, Flinders Institute for NanoScale Science and Technology, Flinders University said “The VFD is a game changer for many applications across the sciences, engineering and medicine, and the commercialisation of the device will have a big impact in the research and teaching arena,” Nano-carbon materials can replace metals in many products, as a new paradigm in manufacturing, and the commercial availability of such materials by 2D Fluidics will make a big impact. It also has exciting possibilities in industry for low cost production where the processing is under continuous flow, which addresses scaling up - often a bottleneck issue in translating processes into industry.

Tags:  2D Fluidics  batteries  Carbon Nanotubes  circuits  Composites  electronics  First Graphene  Graphene  Plastics  research laboratories  supercapacitors  Vortex Fluidic Device (VFD) 

Share |
PermalinkComments (0)
 

Graphene Interlayer Fixes the Schottky Diode

Posted By Dexter Johnson, IEEE Spectrum, Friday, February 10, 2017

Schottky diodes are the grand daddy of semiconductor devices. They are formed when a semiconductor material is combined with a metal and the junction between the two materials creates the Schottky diode. Despite being around since forever, it’s never been quite possible to make them into an ideal diode in which when a voltage is applied it acts as conductor and when the voltage is reversed it serves as a insulator.

Now researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have been able to produce the ideal version of the Schottky diode by inserting a graphene layer between the semiconductor and the metal, and in the process have eliminated 50 years of head scratching over this issue. 

In research described in the journal Nano Letters, the UNIST researchers discovered that graphene serves to prevent the intermixing of atoms that occurs when the semiconductor and metal are touching each other directly.

“The space between the carbon atoms that make up the graphene layer has a high quantum mechanical electron density and therefore no atoms can pass through it,” said Kibog Park, a professor at UNIST and co-author of the paper, in a press release. “Therefore, by inserting the graphene layer between metal and semiconductor, it is possible to overcome the inevitable atomic diffusion problem.”

While the research solved this problem, it also confirmed a prediction that it didn’t matter what kind of metal was used to form the Schottky junction; the performance does not change significantly.

The applications for Schottky diodes are pretty broad, but the main use is that of a rectifier, which converts alternating current (AC) to direct current (DC). But so many electronic devices use these diodes that this research is expected to resolve what has been a long-standing issue within the electronic industry.

Tags:  electronics  graphene interlayer  metal  rectifier  Schottky diodes  semiconductor 

Share |
PermalinkComments (0)
 

Electronics Applications for Graphene Hold Great Promise

Posted By Terrance Barkan, Monday, October 31, 2016

Applications that have really spurred a huge amount of graphene and other two-dimensional (2D) material research over the years have come from the field of electronics. The fear that complementary metal–oxide–semiconductor (CMOS) technology is quickly nearing the end of its ability to ward off Moore’s Law, in which the number of transistors in a dense integrated circuit doubles approximately every two years, has been the spur for much graphene research.

However, there has always been the big problem for graphene that it does not have an intrinsic band gap. It’s a pure conductor and not a semiconductor, like silicon, capable turning on and off the flow of electrons through it. While graphene can be functionalized in a way that it does have a band gap, research for it in the field of electronics have looked outside of digital logic where an intrinsic band gap is such an advantage. 

In the stories below, we see how graphene’s unrivaled conductivity is being exploited to take advantage of its strengths rather than trying to cover up for its weaknesses.

Graphene Comes to the Rescue of Li-ion Batteries

The role of graphene in increasing the charge capacity of the electrodes in lithium-ion (Li-ion) batteries has varied. There’s been “decorated graphene” in which nanoparticles are scattered across the surface of the graphene, and graphene nanoribbons, just to name a few of the avenues that have been pursued.

Another way in which graphene has been looked at is to better enable silicon to serve as the electrode material for Li-ion batteries. Silicon is a great material for increasing the storage capacity of electrodes in Li-ion batteries, but there’s one big problem: it cracks after just few charge/discharge cycles. The aim has been to find a way to make silicon so that it’s not so brittle and can withstand the swelling and shrinking during the charge charging and discharing of lithium atoms into the electrode material In these efforts, like those out Northwestern University, the role of graphene has been to sandwich silicon between layers graphene sheets in the anode of the battery.

Now, Yi Cui from both Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, who has been at the forefront of research to get silicon to be more flexible and durable for Li-ion batteries, has turned to graphene to solve the issue

Cui and his colleagues were able to demonstrate in research described in the journal Nature Energy, a method for to encasing each particle of silicon in a cage of graphene that enables the silicon to expand and contract without cracking. In a full-cell electrochemical test, the graphene-infused silicon anodes retained 90 percent of their charge capacity after 100 charge-discharge cycles. 

Previous attempts by Cui and many others to create nanostructured silicon has been very difficult, making mass production fairly impractical. However, based on these latest results, Cui believes that this approach is not only technologically possible, but may in fact be commercially viable.

The process involves coating the silicon particles with a layer of nickel. The nickel coating is used as the surface and the catalyst for the second step: growing the graphene. The final step of the process involves using an acid on the graphene-coated silicon particles so that the nickel is etched away.

“This new method allows us to use much larger silicon particles that are one to three microns, or millionths of a meter, in diameter, which are cheap and widely available,” Cui said in a press release. “Particles this big have never performed well in battery anodes before, so this is a very exciting new achievement, and we think it offers a practical solution.”

While a practical manufacturing approach was much needed, the technique also leads to an electrode material with very high charge capacity.

“Researchers have tried a number of other coatings for silicon anodes, but they all reduced the anode’s efficiency,” said Stanford postdoctoral researcher Kai Yan, in a press release. “The form-fitting graphene cages are the first coating that maintains high efficiency, and the reactions can be carried out at relatively low temperatures.”

Graphene Provides the Perfect Touch to Flexible Sensors

 

Photo: Someya Laboratory

Flexible sensors are the technological backbone of artificial skin technologies. The idea is that you can impart the sense of touch to a flexible sensor, making it possible to cover a prosthetic device for either a robot or replacement limb so it can feel. Creating materials that tick the boxes of flexibility, durability and sensitivity has been a challenge. Over the years, researchers have increasingly turned to nanomaterials, and graphene in particular, as a possible solution. 

Researchers at the University of Tokyo have found that nanofibers produced from a combination of carbon nanotubes and graphene overcomes some of the big problems facing flexible pressure sensors: they’re not that accurate after being bent or deformed. The researchers have suggested that the flexible sensor they have developed could provide a more accurate detection breast cancer.

In research described in the journal Nature Nanotechnology, the scientists produced their flexible sensor by employing organic transistors and a pressure sensitive nanofiber structure.

The researchers constructed the nanofiber structure using nanofibers with diameters ranging between 300 to 700 nanometers. The researchers produced the nanofibers by combining carbon nanotubes and graphene and mixing that into a flexible polymer. The nanofibers entangled with each other to form a thin, transparent structure.

In contrast to other flexible sensors in which the striving for accuracy makes the sensors too sensitive to being deformed in any way, the fibers in this new flexible sensor does not lose their accuracy in measuring pressures. These fibers achieve this because of their ability to change their relative alignment to accommodate the bending. This allows them to continue measuring pressure because it reduces the strain in individual fibers.

Tunable Graphene Plasmons Lead to Tunable Lasers

Illustration: University of Manchester

A few years ago, researchers found that the phenomenon that occurs when photons strike a metallic surface and stir up the movement of electrons on the surface to the point where the electrons form into waves—known as surface plasmons—also occurs in graphene. 

This discovery along with the ability to tune the graphene plasmons has been a big boon for the use of graphene in optoelectronic applications.  Now research out of the University of Manchester, led by Konstantin Novoselov, who along with Andre Geim were the two University of Manchester scientists who won the Nobel Prize for discovering graphene, has leveraged the ability of tuning graphene plasmons and combined it with terahertz quantum cascade lasers, making it possible to reversibly alter their emission. 

This ability to reversibly the alter the emission of quantum cascade lasers is a big deal in optoelectronic applicatiopns, such as fiber optics telecommunication technologies by offering potentially higher bandwidth capabilities.

“Current terahertz devices do not allow for tunable properties, a new device would have to be made each time requirements changed, making them unattractive on an industrial scale,” said Novoselov in a press release. “Graphene however, can allow for terahertz devices to be switched on and off, as well as altering their state.”

In research described in the journal Science, were able to manipulate the doping levels of a graphene sheet so that it generated plasmons on its surface. When this doped graphene sheet was combined with a terahertz quantum cascade laser, it became possible to tune the transmission of the laser by tuning the graphene plasmons, essentially changing the concentration of charge carriers.

Graphene Flakes Speed Up Artificial Brains

Illustration: Alexey Kotelnikov/Alamy


Researchers out of Princeton University have found that graphene flakes could be a key feature in computer chips that aim at mimicking the function of the human brain. 


In the human brain, neurons are used to transmit information by passing electrical charges through them. In artificial brains, transistors would take the place of neurons. One approach has been to construct the transistors out of lasers that would turn and off and the time intervals between the on and off states of the lasers would represent the 1s and 0s of digital logic.

One of the challenges that researchers have faced in this design is getting the time intervals between the laser pulses down to picosecond time scales, one trillionth of a second.

In research described in the journal Nature Scientific Reports, the Princeton researchers placed graphene flakes inside a semiconductor laser to act as a kind of “saturable absorber,” that absorbed photons and then was able to emit them in a quick burst. 

It turns out graphene possesses a number of properties that makes it attractive for this application. Not only can it absorb and release photons extremely quickly, but it can also work at any wavelength. What this means is that even if semiconductor lasers are emitting different colors, the graphene makes it possible for them to work together simultaneously without interfering with each other, leading to higher processing speeds.

 

 

 

 

 

Tags:  Batteries  Decorated Graphene  Electronics  Flexible Sensors  Graphene  Graphene Nanoribbons  Lasers  Li-ion  optoelectronics  Semiconductor 

Share |
PermalinkComments (0)
 

Electronics Applications for Graphene Still Hold Center Stage

Posted By Terrance Barkan, Wednesday, September 21, 2016

While membranes for separation technologies may be an attractive application for graphene, it will continue to be offered up as an alternative in electronic applications

 

The applications that have really spurred the huge amount of graphene and other two-dimensional (2D) material research over the years have come from the field of electronics. The fear that complementary metal–oxide–semiconductor (CMOS) technology is quickly nearing the end of its ability to ward off Moore’s Law, in which the number of transistors in a dense integrated circuit doubles approximately every two years, has been the spur for much graphene research.

 

However, there has always been the big problem for graphene that it does not have an intrinsic band gap. It’s a pure conductor and not a semiconductor, like silicon, capable turning on and off the flow of electrons through it. While graphene can be functionalized in a way that it does have a band gap, research for it in the field of electronics have looked outside of digital logic where an intrinsic band gap is such an advantage. 

 

In the stories below, we see how graphene’s unrivaled conductivity is being exploited to take advantage of its strengths rather than trying to cover up for its weaknesses

 

Graphene Comes to the Rescue of Li-ion Batteries

 

 

The role of graphene in increasing the charge capacity of the electrodes in lithium-ion (Li-ion) batteries has varied. There’s been “decorated graphene” in which nanoparticles are scattered across the surface of the graphene, and graphene nanoribbons, just to name a few of the avenues that have been pursued.

 

Another way in which graphene has been looked at is to better enable silicon to serve as the electrode material for Li-ion batteries. Silicon is a great material for increasing the storage capacity of electrodes in Li-ion batteries, but there’s one big problem: it cracks after just few charge/discharge cycles. The aim has been to find a way to make silicon so that it’s not so brittle and can withstand the swelling and shrinking during the charge charging and discharing of lithium atoms into the electrode material In these efforts, like those out of Northwestern University, the role of graphene has been to sandwich silicon between layers graphene sheets in the anode of the battery.

 

Now, Yi Cui from both Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, who has been at the forefront of research to get silicon to be more flexible and durable for Li-ion batteries, has turned to graphene to solve the issue. 

 

Cui and his colleagues were able to demonstrate in research described in the journal Nature Energy, a method for to encasing each particle of silicon in a cage of graphene that enables the silicon to expand and contract without cracking. In a full-cell electrochemical test, the graphene-infused silicon anodes retained 90 percent of their charge capacity after 100 charge-discharge cycles. 

 

Previous attempts by Cui and many others to create nanostructured silicon has been very difficult, making mass production fairly impractical. However, based on these latest results, Cui believes that this approach is not only technologically possible, but may in fact be commercially viable.

 

The process involves coating the silicon particles with a layer of nickel. The nickel coating is used as the surface and the catalyst for the second step: growing the graphene. The final step of the process involves using an acid on the graphene-coated silicon particles so that the nickel is etched away.

 

“This new method allows us to use much larger silicon particles that are one to three microns, or millionths of a meter, in diameter, which are cheap and widely available,” Cui said in a press release. “Particles this big have never performed well in battery anodes before, so this is a very exciting new achievement, and we think it offers a practical solution.”

 

While a practical manufacturing approach was much needed, the technique also leads to an electrode material with very high charge capacity.

 

“Researchers have tried a number of other coatings for silicon anodes, but they all reduced the anode’s efficiency,” said Stanford postdoctoral researcher Kai Yan, in a press release. “The form-fitting graphene cages are the first coating that maintains high efficiency, and the reactions can be carried out at relatively low temperatures.”

 

Graphene Provides the Perfect Touch to Flexible Sensors

 

Flexible sensors are the technological backbone of artificial skin technologies. The idea is that you can impart the sense of touch to a flexible sensor, making it possible to cover a prosthetic device for either a robot or replacement limb so it can feel. Creating materials that tick the boxes of flexibility, durability and sensitivity has been a challenge. Over the years, researchers have increasingly turned to nanomaterials, and graphene in particular, as a possible solution. 

 

Researchers at the University of Tokyo have found that nanofibers produced from a combination of carbon nanotubes and graphene overcomes some of the big problems facing flexible pressure sensors: they’re not that accurate after being bent or deformed. The researchers have suggested that the flexible sensor they have developed could provide a more accurate detection breast cancer.

 

In research described in the journal Nature Nanotechnology, the scientists produced their flexible sensor by employing organic transistors and a pressure sensitive nanofiber structure.

 

The researchers constructed the nanofiber structure using nanofibers with diameters ranging between 300 to 700 nanometers. The researchers produced the nanofibers by combining carbon nanotubes and graphene and mixing that into a flexible polymer. The nanofibers entangled with each other to form a thin, transparent structure.

 

In contrast to other flexible sensors in which the striving for accuracy makes the sensors too sensitive to being deformed in any way, the fibers in this new flexible sensor does not lose their accuracy in measuring pressures. These fibers achieve this because of their ability to change their relative alignment to accommodate the bending. This allows them to continue measuring pressure because it reduces the strain in individual fibers.

 

Tunable Graphene Plasmons Lead to Tunable Lasers


 

  

A few years ago, researchers found that the phenomenon that occurs when photons strike a metallic surface and stir up the movement of electrons on the surface to the point where the electrons form into waves—known as surface plasmons—also occurs in graphene

 

This discovery along with the ability to tune the graphene plasmons has been a big boon for the use of graphene in optoelectronic applications. Now research out of the University of Manchester, led by Konstantin Novoselov, who along with Andre Geim were the two University of Manchester scientists who won the Nobel Prize for discovering graphene, has leveraged the ability of tuning graphene plasmons and combined it with terahertz quantum cascade lasers, making it possible to reversibly alter their emission. 

 

This ability to reversibly the alter the emission of quantum cascade lasers is a big deal in optoelectronic applicatiopns, such as fiber optics telecommunication technologies by offering potentially higher bandwidth capabilities.

 

“Current terahertz devices do not allow for tunable properties, a new device would have to be made each time requirements changed, making them unattractive on an industrial scale,” said Novoselov in a press release. “Graphene however, can allow for terahertz devices to be switched on and off, as well as altering their state.”

 

In research described in the journal Science, were able to manipulate the doping levels of a graphene sheet so that it generated plasmons on its surface. When this doped graphene sheet was combined with a terahertz quantum cascade laser, it became possible to tune the transmission of the laser by tuning the graphene plasmons, essentially changing the concentration of charge carriers.

 

Graphene Flakes Speed Up Artificial Brains


 

 

Researchers out of Princeton University have found that graphene flakes could be a key feature in computer chips that aim at mimicking the function of the human brain. 

In the human brain, neurons are used to transmit information by passing electrical charges through them. In artificial brains, transistors would take the place of neurons. One approach has been to construct the transistors out of lasers that would turn and off and the time intervals between the on and off states of the lasers would represent the 1s and 0s of digital logic.

 

One of the challenges that researchers have faced in this design is getting the time intervals between the laser pulses down to picosecond time scales, one trillionth of a second.

 

In research described in the journal Nature Scientific Reports, the Princeton researchers placed graphene flakes inside a semiconductor laser to act as a kind of “saturable absorber,” that absorbed photons and then was able to emit them in a quick burst. 

 

It turns out graphene possesses a number of properties that makes it attractive for this application. Not only can it absorb and release photons extremely quickly, but it can also work at any wavelength. What this means is that even if semiconductor lasers are emitting different colors, the graphene makes it possible for them to work together simultaneously without interfering with each other, leading to higher processing speeds.



Tags:  Batteries  Electronics  Flexible electronics  Lasers  Li-ion  Sensors 

Share |
PermalinkComments (0)