Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Projects Led by Pitt Chemical Engineers Receive more than $1 million in NSF Funding

Posted By Graphene Council, Saturday, September 19, 2020
Two projects led by professors in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh’s Swanson School of Engineering have recently received funding from the National Science Foundation.

Lei Li, associate professor of chemical and petroleum engineering at Pitt, is leading a project that will investigate the water wettability of floating graphene. Research over the past decade by Li and others has shown that water has the ability to “see through” atomic-thick layers of graphene, contributing to the “wetting transparency” effect. 

“This finding provides a unique opportunity for designing multi-functional devices, since it means that the wettability of an atomic-thick film can be tuned by selecting an appropriate supporting substrate,” said Li. “Because the substrate is liquid, one can control the wettability in real-time, a capability that would be very useful for water harvesting of moisture from the air and in droplet microfluidics devices.”

The current project will use both experimental and computational methods to understand the mechanisms of wetting transparency of graphene on liquid substrates and demonstrate the real-time control of surface wettability. Li and his co-PIs Kenneth Jordan, Richard King Mellon Professor and Distinguished Professor of Computational Chemistry at Pitt and co-director of the Center for Simulation and Modeling; and Haitao Liu, professor of chemistry at Pitt, received $480,000 for the project titled, “Water wettability of floating graphene: Mechanism and Application.” 

The second project will develop technology to help enable the widespread adoption of renewable energy, like solar and wind power. James McKone, assistant professor of chemical and petroleum engineering at Pitt, is collaborating with researchers at the University of Rochester and the University at Buffalo to develop a new generation of high-performance materials for liquid-phase energy storage systems like redox flow batteries, one of McKone’s areas of expertise. The project, “Collaborative Research: Designing Soluble Inorganic Nanomaterials for Flowable Energy Storage,” received $598,000 from the National Science Foundation, with $275,398 designated for Pitt.

McKone’s team will investigate the molecular properties of soluble, earth-abundant nanomaterials for use in liquid-phase battery systems. These batteries are designed to store massive amounts of electricity from renewable energy sources and provide steady power to the grid.

“Unlike the batteries we normally think of in phones and laptop computers, this technology uses liquid components that are low-cost, safe and long-lasting,” said McKone. “With continued development, this will make it possible to store all of the new wind and solar power that is coming available on the electric grid without adding a significant additional cost.” 

McKone is collaborating with Dr. Ellen Matson, Wilmot Assistant Professor of Chemistry at the University of Rochester, and Dr. Timothy Cook, Associate Professor of Chemistry at the University at Buffalo.

Tags:  Batteries  energy storage  floating graphene  Graphene  James McKone  Lei Li  nanomaterials  National Science Foundation  University of Pittsburgh 

Share |
PermalinkComments (0)

New low-cost method upscales & produces twisted multilayer highly conducting graphene

Posted By Graphene Council, Thursday, September 17, 2020
Graphene, the one-atom-thick sheet of carbon atoms, which is a boon for energy storage, coatings, sensors as well as superconductivity, is difficult to produce while retaining its single layered properties.

A new low-cost method of upscaling production of graphene while preserving its single layered properties, developed by Indian scientists, may reduce the cost of producing this thinnest, strongest and most conductive material in the world.

Researchers from Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) an autonomous institute under the Department of Science & Technology, Government of India through their recent research work have upscaled graphene production while retaining its thin layered properties. This was made possible by a simple, affordable method wherein naphthalene coated nickel foil was heated for a few minutes in an ordinary vacuum by joule heating and was cooled to get twisted layers of graphene. Careful study using electronic diffraction and Raman scattering showed that the 2D single-crystal nature of the atomic lattice of the graphene is retained even in the multilayer stack. The twisted multilayer graphene that results is also highly conducting.

In the research by Nikita Gupta (Ph.D. student, JNCASR) and Prof. G.U. Kulkarni (corresponding author ) published in the ‘Journal of Physical Chemistry Letters’, the scientists have also defined a formula to quantify how much single layer like behaviour exists in such a system. The twisted system has multiple layers, each behaving like a single layer, allows variation in the experimental data within one sample, thus making quantification possible to achieve. The derived formula provides an insight into any twisted hexagonal multilayer system and may be used to tune superconductivity.

The researchers used a combination of two techniques to understand and quantify how much single layer like behaviour exists in the graphene system. Raman spectroscopy---a technique to understand whether a graphene species has single layer like behaviour arising because of no interlayer interaction and electron diffraction--a technique to study the morphology of the given twisted system.

Observing fascinating properties of twisted multilayer graphene such as visible absorption band, efficient corrosion resistance, temperature-dependent transport, influencing the crystalline orientation of source material, helped the JNCASR team to understand the landscape of the given twisted multilayer graphene system.

Recent publication in the journal ‘Nature’ by James M. Tour, an eminent peer on this research discovery (, confirms the upper limit of relative Raman intensity predicted by this work, experimentally. The present understanding of twisted multilayer graphene will help in understanding any twisted hexagonal system. It gives an upper limit of relative Raman intensity which can exist in a particular multilayer graphene system.

Tags:  energy storage  G.U. Kulkarni  Graphene  Jawaharlal Nehru Centre for Advanced Scientific Re  Sensors 

Share |
PermalinkComments (0)

UH Announces Funding for Carbon Management Projects

Posted By Graphene Council, Tuesday, September 8, 2020
The Center for Carbon Management in Energy at the University of Houston has awarded $275,000 in research funding for projects focused on carbon management and the energy transition.

The projects cover a range of projects, from converting carbon to fuel and other useful products to a proposed new wireless monitoring system for carbon capture storage.

The Center for Carbon Management in Energy was launched as a University research center in 2019 to form an academic-industry consortium to reduce industry’s carbon footprint and find new business opportunities for carbon dioxide, methane and other greenhouse gas emissions.

Ramanan Krishnamoorti, chief energy officer at UH, said the first round of funding is intended to jumpstart solutions needed for Houston and the world to prosper in the energy transition.

“No one solution will be sufficient to achieve a low-carbon world,” he said. “We must be thinking about moving to low- and zero-carbon fuel sources while also addressing the challenges of capturing and utilizing the carbon we currently produce.”

The projects were drawn from 19 proposals and selected by a panel comprised of UH experts and industry representatives from Shell, Chevron, BP, Kiewit and Baker Hughes.  

Amr Elnashai, vice president for research and technology transfer at UH, said the center, and the transformational work it will be able to leverage, play an important role in the University’s goals to both increase research output by 50% in five years and to provide innovative solutions for societal concerns.

“The Center for Carbon Management in Energy is the focal point for our efforts to provide scalable solutions to industry and societal needs,” Elnashai said. “These research projects provide a sense of the wide range of work that the center will spur.”

The selected projects and principal investigators, all from UH, include:

• Carbon capture and storage in depleted gas fields along the Gulf of Mexico, Dimitrios G. Hatzignatiou, professor of petroleum engineering
• Single-step direct air capture and conversion to fuels and chemicals, Praveen Bollini, assistant professor of chemical and biomolecular engineering
• Converting carbon waste to graphite, graphene and morphed graphene for energy and structural applications, Francisco Robles Hernandez, associate professor of engineering technology
• All-day carbon capture and sequestration through molecular and phase-change hybrid modules, Hadi Ghasemi, Cullen Associate Professor of Mechanical Engineering
• Real-time subsurface wireless communication and sensing for CO2 storage, Jiefu Chen, assistant professor of electrical and computer engineering
• Processing algae to biodiesel and organic acid to enable microalgae-based carbon capture, Venkatesh Balan, assistant professor of engineering technology

Money for the grants was drawn primarily from industry contributions, said Charles McConnell, executive director for Carbon Management and Energy Sustainability at UH.

The projects, funded for 12 or 18 months, were selected based on technical merit and relevance to the marketplace, McConnell said, with the ultimate goal of spurring new partnerships to commercialize new carbon management technologies.

Tags:  Amr Elnashai  Charles McConnell  Energy Storage  Graphene  Ramanan Krishnamoorti  The Center for Carbon Management in Energy  University of Houston 

Share |
PermalinkComments (0)

New technology extracts potential to identify quality graphene cheaper and faster

Posted By Graphene Council, Wednesday, August 26, 2020
Engineers at Australia’s Monash University have developed world-first technology that can help industry identify and export high quality graphene cheaper, faster and more accurately than current methods.

Published in international journal Advanced Science ("A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions"), researchers used the data set of an optical microscope to develop a machine-learning algorithm that can characterise graphene properties and quality, without bias, within 14 minutes.

This technology is a game changer for hundreds of graphene or graphene oxide manufacturers globally. It will help them boost the quality and reliability of their graphene supply in quick time.

Currently, manufacturers can only detect the quality and properties of graphene used in a product after it has been manufactured.

Through this algorithm, which has the potential to be rolled out globally with commercial support, graphene producers can be assured of quality product and remove the time-intensive and costly process of a series of characterisation techniques to identify graphene properties, such as the thickness and size of the atomic layers.

Professor Mainak Majumder from Monash University’s Department of Mechanical and Aerospace Engineering and the Australian Research Council’s Hub on Graphene Enabled Industry Transformation led this breakthrough study.

“Graphene possesses extraordinary capacity for electric and thermal conductivity. It is widely used in the production of membranes for water purification, energy storage and in smart technology, such as weight loading sensors on traffic bridges,” Professor Majumder said.

“At the same time, graphene is rather expensive when it comes to usage in bulk quantities. One gram of high quality graphene could cost as much as $1,000 AUD ($720 USD) a large percentage of it is due to the costly quality control process.

“Therefore, manufacturers need to be assured that they’re sourcing the highest quality graphene on the market. Our technology can detect the properties of graphene in under 14 minutes for a single dataset of 1936 x 1216 resolution. This will save manufacturers vital time and money, and establish a competitive advantage in a growing marketplace.”

Discovered in 2004, graphene is touted as a wonder material for its outstanding lightweight, thin and ultra-flexible properties. Graphene is produced through the exfoliation of graphite. Graphite, a crystalline form of carbon with atoms arranged hexagonally, comprises many layers of graphene.

However, the translation of this potential to real-life and usable products has been slow. One of the reasons is the lack of reliability and consistency of what is commercially often available as graphene.

The most widely used method of producing graphene and graphene oxide sheets is through liquid phase exfoliation (LPE). In this process, the single layer sheets are stripped from its 3D counterpart such as graphite, graphite oxide film or expanded graphite by shear-forces.

But, this can only be imaged using a dry sample (i.e. once the graphene has been coated on a glass slide). “Although there has been a strong emphasis on standardisation guidelines of graphene materials, there is virtually no way to monitor the fundamental unit process of exfoliation, product quality varies from laboratory to laboratory and from one manufacturer to other,” Dr Shaibani said.

“As a result, discrepancies are often observed in the reported property-performance characteristics, even though the material is claimed to be graphene.

“Our work could be of importance to industries that are interested in delivering high quality graphene to their customers with reliable functionality and properties. There are a number of ASX listed companies attempting to enter this billion-dollar market, and this technology could accelerate this interest.”

Researchers applied the algorithm to an assortment of 18 graphene samples – eight of which were acquired from commercial sources and the rest produced in a laboratory under controlled processing conditions.

Using a quantitative polarised optical microscope, researchers identified a technique for detecting, classifying and quantifying exfoliated graphene in its natural form of a dispersion.

To maximise the information generated from hundreds of images and large numbers of samples in a fast and efficient manner, researchers developed an unsupervised machine-learning algorithm to identify data clusters of similar nature, and then use image analysis to quantify the proportions of each cluster.

Mr Abedin said this method has the potential to be used for the classification and quantification of other two-dimensional materials.

“The capability of our approach to classify stacking at sub-nanometer to micrometer scale and measure the size, thickness, and concentration of exfoliation in generic dispersions of graphene/graphene oxide is exciting and holds exceptional promise for the development of energy and thermally advanced products,” Mr Abedin said.

Professor Dusan Losic, Director of Australian Research Council’s Hub on Graphene Enabled Industry Transformation, said: “These outstanding outcomes from our ARC Research Hub will make significant impact on the emerging multibillion dollar graphene industry giving graphene manufacturers and end-users new a simple quality control tool to define the quality of their produced graphene materials which is currently missing.”

Tags:  2D materials  Australian Research Council  Dusan Losic  energy storage  Graphene  Mainak Majumder  Monash University  water purification 

Share |
PermalinkComments (0)

No more playing with fire: Study offers insight into 'safer' rechargeable batteries

Posted By Graphene Council, Friday, August 21, 2020
Lithium-ion batteries (LIBs) are a common type of rechargeable batteries. Their versatile nature and numerous applications in all sorts of electronic devices -- from mobile phones to cars -- makes them seem too good to be true. And perhaps they are: recently, there has been an increase in the number of fire-related incidents associated with LIBs, especially during charging, causing serious concerns over their safety. Scientists now know that these incidents can be due to the use of a broken or unauthorized charger. Often, improper use of these chargers and overcharging can lead to the formation of spiky structures on the negative electrode of the battery, called "lithium (Li) dendrites," which penetrate through the barrier between the negative and positive electrodes and cause a short circuit. Thus, looking at exactly how dendrite formation occurs is crucial to improving the safety of LIBs.

Scientists at Okayama University, led by Associate Professor Kazuma Gotoh, recently took a step in this direction, in a new study published in Journal of Materials Chemistry A. They delved into finding the precise mechanism of dendrite formation in LIBs, in an effort to overcome their limitations and make their practical application easier. Dr Gotoh explains, "We wanted to analyze the formation of metal dendrites in secondary (rechargeable) batteries and contribute to improve the safety of batteries."

Previous studies that tried to understand the process of Li dendrite formation were successful to some extent: they revealed that when the battery is in an overcharged state, dendrite formation occurs in the "overlithiation" phase of the battery cycle. But, these experiments were performed ex situ (outside the actual electrochemical environment), and thus the exact time of onset of dendrite formation was not found. In their new study, Dr Gotoh and his team decided to overcome this limitation. They figured that by applying "operando" methods (which replicate the electrochemical environment) to an analytical technique called "nuclear magnetic resonance" (NMR), they can accurately track the Li atoms in the inner structure of materials, which is not possible when using ex situ methods.

Using this technique, the team had previously succeeded in observing the overcharged states of two types of negative electrodes -- graphite and hard carbon electrodes -- in the overlithiation phase of an LIB. In the new study, they took this to the next level by observing the state of these electrodes during the lithiation and delithiation process (the "charge and discharge" cycle of the battery). Their NMR analysis helped them to track the precise onset time of dendrite formation and Li deposition in the overcharged battery, for both the graphite and hard carbon electrodes. In graphite, they found the Li dendrites form soon after the "fully lithiated" phase of the electrode occurs. In the hard carbon electrode -- in contrast -- they observed that dendrites form only after "quasimetallic" Li clusters occur in the pores of hard carbon. Thus, the scientists deduced that when the battery is overcharged, the quasimetallic Li cluster formation acts as a buffer for the formation of Li dendrites in hard carbon electrodes. They even applied the same analysis to another type of rechargeable battery, called sodium-ion battery (NIB), and found similar results. Dr Gotoh explains, "We found that some carbon materials having inner pores (such as amorphous carbon) have a buffer effect for the deposition of Li and Na dendrites during overcharging of batteries. This knowledge will play an important role in ensuring the safety of LIBs and NIBs."

By revealing the intricacies of the dendrite formation mechanisms in LIBs and NIBs, Dr Gotoh and his team provide useful insight into their safety. In fact, the scientists are optimistic that their findings can be applied to other types of rechargeable batteries in the future. Dr Gotoh concludes, "Our findings can be applied not only to LIBs and NIBs but also to next-generation secondary batteries such as all solid-state batteries. This is an important step in making their practical application easier."

With the findings of this new study, we can hope that we possibly are one step closer to realizing our dream of truly sustainable energy resources.

Tags:  Batteries  Energy Storage  Graphene  Kazuma Gotoh  Li-ion batteries  Okayama University 

Share |
PermalinkComments (0)

New eco-friendly nanomaterial could energise electric storage

Posted By Graphene Council, Tuesday, August 4, 2020
A Griffith University researcher has won an $860,000 Australian Research Council Future Fellowship grant to develop an environmentally friendly method to produce thin-layered 2D nanomaterials used in everything from sensors to energy storage devices.

Two-dimensional (2D) nanomaterial refers to ultra-thin sheets of a material such as graphite or titanium carbide that are as little as one atom thick (~ one nanometer or one millionth of a millimeter).

“Peeling conventional materials into atomically thin nano-layers reveals extraordinary electrical and thermal conductive properties, many times higher than parent materials,” said Dr Yulin Zhong from the Centre for Clean Environment and Energy and the School of Environment and Science.

“When incorporated into energy storage, energy conversion and flexible electronic devices, 2D nanomaterials can substantially boost the device performances. The use of 2D nanomaterials in rechargeable batteries, for example, greatly increases the charging speed and capacity.”

The typical ways to break materials down into 2D nanomaterials rely on harsh chemical processes involving toxic strong acids and oxidants. This requires the costly cleanup and disposal or recycling of chemical waste products after the reactions.

“The electrochemical method we are developing replaces the harmful acids and oxidants used to produce 2D nanomaterials, with electrical power, minimising chemical wastes,” Dr Zhong said.

“The salt solutions we employed in this process can be reused many times over with very little product cleaning required, making the electrochemical method a greener and more cost-effective way to produce 2D nanomaterials.

“The advent of these advanced production and manufacturing technologies will accelerate the technological development in areas such as energy storage and health monitoring.

“Thus development of this electrochemical process is win-win, using a more environmentally sustainable methodology to impart superior properties to traditional materials, and will directly support the growth of Australian high-tech companies.”

Tags:  2D materials  Energy Storage  Graphene  Griffith University  nanomaterials  Yulin Zhong 

Share |
PermalinkComments (0)


Posted By Graphene Council, Thursday, July 2, 2020
Superheroes squeeze a lump of coal and turn it into a sparkling diamond – in comic books, anyway. There is some scientific validity to this fictional feat. Coal and diamonds are both composed of carbon. The two materials differ in their microscopic arrangement of atoms, and that leads to quite a difference in appearance, conductivity, hardness and other properties.

As this shows, the microstructure of carbon-based materials is important. Optimizing carbon microstructure could benefit applications in energy storage, sensors and next generation nuclear material systems.

Now a group of researchers at Idaho National Laboratory (INL) have conducted a study that could lead to improved methods to fine-tune the carbon microstructure. The scientists reported on their work in a June 2020 Materials Today Chemistry paper.

Kunal Mondal, an INL materials science researcher, conducted the group’s experiments, which involved subjecting tiny carbon films and fibers to temperatures as high as 3000o C (5400o F). That heat caused the microstructure in the films and fibers to become less disordered (or amorphous) and more diamondlike (or crystalline).

“When carbon structure gets more crystalline, it makes many things possible. First, conductivity of the carbon increases. That means you can get a lot of good applications out of it,” said Mondal, the paper’s lead author. Some of these applications include batteries and sensors, he added.

A goal of the research was to see how the final microstructure varied depending on the temperature and the starting material.

For the initial material, the researchers spun out miniature carbon fibers and coated substrates with thin carbon films. They heat treated these polymer precursors at temperatures ranging from 1000 to 3000o C. They then examined the results with transmission electron microscopes and other instruments, determining the degree of conversion from a loosely organized polymer to a more structured, crystalline arrangement.

Heat treatments are used worldwide to create carbon composite materials with the desired microstructure, which varies by application. The precursors that researchers selected are also widely used. Yet commercial production with these precursors and manufacturing methods can be an intricate process that requires a series of precise heat treatments and other actions.

The final recipe for a product may be reached by trial and error, which can sometimes be extensive. The INL research aims, among other things, to provide a road map with shortcuts to speed up this search.

So, in addition to experimental work, the INL group also did simulations that modeled how the fibers and films would evolve during heat treatment. Gorakh Pawar, another co-author of the paper and an INL staff scientist in the Department of Material Science and Engineering, handled these simulations. The computer models predicted outcomes that were similar to the experimental results. The work was funded through INL’s Laboratory Directed Research and Development program.

The INL study provides clues that can be used to help design precursors and processes that will yield preferred nanostructures, Pawar said. For instance, starting with a film resulted in higher electron mobility than what resulted when starting from fibers, which could be a consequence of the many boundaries in a fiber and their impact on the free movement of electrons. So, for a sensor or another application where conductivity is important, starting with a film might lead to a device that is more sensitive, is faster or uses less power.

In exploring all the possible combinations of processing steps, researchers at national labs, in industry and elsewhere need to be cost-effective in their investigations and outcomes. Simulations like those done by the INL group can help minimize the time, effort and expense of zeroing in on the right process and starting material.

“You cannot run an experiment forever. You need some guidance to optimize your experimental protocol,” Pawar said.


These batteries have an electrode made of graphite, a form of carbon. In operating the battery, the lithium ions are stored between layers in the graphite, which means the amount of void and defects in the material is important. With graphite of the proper structure, that movement of ions can be rapid, a requirement for extreme fast charging. Yet the graphite materials cannot be so porous that it renders the electrode useless.

Such charging might allow electric vehicles to get the equivalent of a full tank of gasoline within minutes instead of hours. That capability would make operating these emission-free cars and trucks similar to what people are used to with current gas-powered vehicles. This means the INL research project could prove beneficial in figuring out how to achieve that type of performance, a capability consumers seek.

“That’s our future goal in energy storage: how we can optimize this graphite structure,” Pawar said.

To help accomplish that, the researchers continue to expand their understanding of carbon microstructures and how they can be produced. In the end, this work may help create an electric vehicle battery that can reach full charge quickly – or, to put it in superhero terms, faster than a speeding bullet.

Tags:  carbon films  carbon nanofibre  Energy Storage  Graphene  Idaho National Laboratory  Kunal Mondal  Sensors 

Share |
PermalinkComments (0)

Gridtential Energy and LOLC Advanced Technologies Team up on New Bipolar Battery Technology

Posted By Graphene Council, Wednesday, June 24, 2020
Gridtential Energy, the inventor and developer of Silicon Joule™ bipolar battery technology and LOLC Advanced Technologies, the research and advanced technology arm of LOLC Group announce that they have entered into a technology evaluation agreement.

Under the agreement, over the next few months, LOLC Advanced Technologies and Gridtential Energy will collaborate on prototyping lead batteries with the combined advantages of Silicon Joule™ bipolar silicon plates and AltaLABGX, the Graphene battery additive applied to active materials, supplied by Ceylon Graphene Technologies, CGT (a joint venture between the LOLC Group and Sri Lanka Institute of Nanotechnology (SLINTEC). Preliminary work indicates that the combination of these elements will lead to higher performing batteries in energy density, charging rates and cycle life.

Silicon Joule™ bipolar technology has created an innovative class of lead batteries with silicon at its core. It is a design driven, low cost, high performance, patented energy storage solution that provides improved power density, cycle life, dynamic charge acceptance and temperature range, with up to 40% lower weight, while retaining full lead-battery recyclability. This is all accomplished while leveraging existing technologies from mature industry supply chains – allowing rapid adoption of existing lead-battery infrastructure.

"We are pleased to be working with LOLC Advanced Technologies and Ceylon Graphene Technologies, leaders in battery manufacturing solutions and graphene battery additives respectively. We expect that leveraging leading-edge electro chemistry with our highly efficient Silicon Joule bipolar design will produce industry leading performance with significantly lower weight," said Gridtential Energy CEO, John Barton. "Whether it is longer cycle-life or greater charge/discharge performance, Gridtential is changing the way that OEMs in automotive, 5G telecom, and stationary power markets think about high-performance, low-cost, safe energy storage.

"Every day, we are making it easier to leap into the Silicon Joule Technology future. Whether it is through our rapid prototyping development kits, off-the-shelf reference batteries, equipment manufacturing partners, and now additive experts, the adoption ecosystem has never been stronger. We are pleased that more and more battery manufacturing companies are taking advantage of our technology - now with Graphene battery additive - to produce lead-based products that can compete with lithium. We are quite confident that first movers will be richly rewarded with commercial success."

With Silicon Joule™ bipolar battery technology from Gridtential Energy, that combines the benefits of lead batteries with silicon-enabled, high performance characteristics, battery manufactures world-wide, will be prepared to meet the challenge.

"Worldwide demand is increasing for superior energy storage systems at the edge and driving innovation. LOLC Advanced Technologies with Ceylon Graphene Technologies are improving battery electro-chemistry with our pure graphene and our advanced manufacturing expertise. Partnering with Gridtential's Silicon Joule bipolar solution will lead the advancements in safe, reliable and higher performing lead batteries," said, Chairman Ishara Nanayakkara, LOLC Group

Tags:  Batteries  Battery  Ceylon Graphene Technologies  Energy Storage  Graphene  Gridtential Energy  Ishara Nanayakkara  John Barton  LOLC Group 

Share |
PermalinkComments (0)

Battery anode agreement with Farasis Energy

Posted By Graphene Council, Wednesday, May 27, 2020

Australian battery anode provider Talga Resources Ltd is pleased to advise the Company has entered an agreement with Farasis Energy Europe GmbH (“Farasis”), a subsidiary of Farasis Energy Inc, one of the world’s leading manufacturers of lithium-ion batteries.

Talga is building a European anode production facility for lithium-ion batteries using the Company’s proprietary material technologies, wholly owned Swedish carbon source and 100% electricity from renewable energy sources. As part of the agreement between Talga and Farasis (“Agreement”), Talga will supply coated (‘active’) anode products for evaluation in Farasis batteries and assessment of potential business development opportunities, primarily in Europe.

Talga Managing Director, Mr Mark Thompson: “Following successful initial tests, we are very pleased to continue this progress in collaboration with the experienced Farasis team. Talga is making substantial progress in commercialising its European lithium-ion battery anode products, and demand is growing rapidly, particularly in the EV market. We look forward to working together with Farasis to advance our anode materials for their innovative energy storage solutions.”

Anode Market Background and Agreement Details
Talga is a developing lithium-ion battery anode producer in Sweden, utilising vertical integration and wholly owned technology to supply cost competitive and high-quality anode to European battery markets. The Company’s operations in northern Sweden use fossil free hydroelectricity, enabling Talga’s position as a low-emission leader in anode production and a secure local partner for the emerging European battery supply chain.

Europe is undergoing unprecedented growth in the demand for lithium-ion batteries, driven by the move to electric vehicles and renewable energy storage. This creates new demand for sustainable and locally sourced battery anode materials, such as Talga’s. In addition, global EV battery demand is forecast to grow 14-fold by 2030, which would require approximately 1.7 million tonnes of anode material per annum1.

Under the non-binding Agreement Talga agrees to supply Farasis with lithium-ion battery anodes in quantities as mutually agreed and required, with no contractually obligated minimum quantity, for evaluation and business development purposes. The Agreement is valid until 2024 and either party can choose to withdraw at any time via standard termination clauses, not constituting binding commercial terms. All of Talga’s intellectual property rights remain unaffected by the Agreement

The Company is unable to quantify the economic benefits to Talga arising from the Agreement at this stage. Further terms, including quantity and pricing, are subject to negotiations throughout evaluation and development, and in the event commercially binding contracts are entered into Talga will inform the market. However, Talga recognises Farasis commercial relationships, particularly with European automotive manufacturers2, to be well aligned with its developing Swedish anode business.

Tags:  Battery  energy storage  Farasis Energy Europe GmbH  Graphene  Li-ion batteries  Mark Thompson  Talga Resources 

Share |
PermalinkComments (0)

Holey Graphene: The Emerging Versatile Material Investigated at Khalifa University

Posted By Graphene Council, Tuesday, April 28, 2020
Graphene is a unique material comprising densely packed carbon atoms arranged in a hexagonal honeycomb lattice—known mostly to the public as the layers of material that make up pencil lead. It is extremely versatile and has potential applications in various fields, particularly thanks to its superior optical, electrical, thermal and mechanical properties.

In its purest form, graphene offers myriad applications. However, in recent years, nanoscale perforation of 2D materials has emerged as an effective strategy to enhance and widen the applications of a material beyond its pristine form.

“With the possible exception of cheese, it is well known that materials have modified properties when their structure is perforated,” said Dr. Patole. “Porous graphene, or holey graphene, is a form of graphene with nanopores in its plane. This unique porous structure enables easy interaction with inorganic or organic species, which has broad applications in water desalination, water treatment, environmental protection, and energy storage systems.”

The performance of the material is affected by the pore size, density, shape, and volume, and usually, uniform pore shape and size distribution is optimal as it leads to enhanced thermal, mechanical and electrical properties.

Graphene-based porous materials are classified into three categories based on the assembled architecture, namely holey graphene, 2D laminar porous graphene, and 3D conjugated interconnected porous structures, with holey graphene showing abundant in-plane pores generated at the basal plane using various perforation techniques. Nanochannels are formed due to the regular and periodic stacking of graphene nanosheets over each other, making interlayer pores through which liquid ions can easily pass.

“By exploiting the combined advantages of holes and graphene, holey graphene-based materials have attracted significant interest,” said Dr. Patole. “They have exceptional properties such as high electrical conductivity and high surface area, which allows holey graphene extremely versatile and able to outperform its pristine form for many applications.”

Porous graphene exhibits distinct properties from its pristine form. Compared to other graphene-based porous materials, holey graphene has an increased surface area, reduced nanosheet stacking, enhanced chemical reactivity and a stronger hydrophilic nature, which means it maximizes contact with water. Additionally, it offers high mechanical strength for superior structural stability, high chemical inertness to avoid contamination issues, high thermal stability for use in rigorous environments, high electrical conductivity for rapid electron transport, and high ion diffusion due to the interlayer channels. By fine tuning the parameters of the pores, porous graphene can be optimised for various applications.

“Holey graphene-based materials can be applied in diverse fields, including electrical energy storage, energy conversion, water desalination, bioseparation, fuel cells, gas sensors, and hydrogen storage and dye degradation systems,” added Dr. Patole. “For further research and development, we need to uncover the prime properties and related potential industrial implications of these materials, as well as suitable generation methods.”

The research team identified the pores as the basis for realizing holey graphene’s potential. However, synthesizing even pristine graphene is complicated. The most scalable methods suffer from the drawbacks of producing materials with inconsistent properties and low purity. Methods that produce high-quality graphene are much more expensive and involve the use of highly sophisticated operational setups and accessories.

“This is why it’s important to develop methods that are easy, cost-effective, efficient and scalable for graphene synthesis,” explained Dr. Patole.

When pristine graphene has been produced, it can be made porous by chemical and physical methods, but hole generation is tricky and its parameters depend on the methods adopted for its intended purpose.

“Generally, the expected pore size should be smaller than the conventional pore size of the naturally available materials,” said Dr. Patole. “However, fabricating porous graphene with well-defined pores is still a challenge as it is quite complex and restricted by our current technological limits.”

Synthesizing holey graphene is also associated with the use of toxic chemicals and the high cost of the starting materials, so novel strategies will be required for its synthesis. The researchers investigated the use of biomass as a starting material, including Bougainvillea flowers and Plumeria rubra leaves, among other approaches.

Besides the major reported applications in supercapacitors, lithium ion batteries, electro-water splitting, and water desalination systems, holey graphene-based materials are also applied in various other applications. Some of these applications include hydrogen storage, dye degradation, organic pollutant separation, and gas sensing. Holey graphene has even been investigated for biological applications, with the researchers highlighting effective performance in non-enzymatic glucose detection in human blood samples and selective bacterial detection.

“Holey graphene-based materials have emerged as versatile materials and have demonstrated superior performance in many applications,” explained Dr. Patole. “With continuous efforts and developments, the commercial application of holey graphene-based materials will surely revolutionize all sorts of applications.”

Tags:  2D materials  Energy Storage  Graphene  Khalifa University  Shashikant Patole 

Share |
PermalinkComments (0)
Page 1 of 3
1  |  2  |  3