Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

2D Fluidics Pty Ltd created to launch the Vortex Fluidic Device (VFD)

Posted By Terrance Barkan, Friday, June 22, 2018

 

Advanced materials company, First Graphene Limited (“FGR” or “the Company”) (ASX: FGR) is pleased to announce the launch of its 50%-owned associate company, 2D Fluidics Pty Ltd, in collaboration with Flinders University’s newly named Flinders Institute for NanoScale Science and Technology

 

The initial objective of 2D Fluidics will be the commercialisation of the Vortex Fluidic Device (VFD), invented by the Flinders Institute for NanoScale Science and Technology’s Professor Colin Raston. The VFD enables new approaches to producing a wide range of materials such as graphene and sliced carbon nanotubes, with the bonus of not needing to use harsh or toxic chemicals in the manufacturing process (which is required for conventional graphene and shortened carbon nanotube production). 

 

This clean processing breakthrough will also greatly reduce the cost and improve the efficiency of manufacturing these new high quality super-strength carbon materials. The key intellectual property used by 2D Fluidics comprises two patents around the production of carbon nanomaterials, assigned by Flinders University. 

 

2D Fluidics will use the VFD to prepare these materials for commercial sales, which will be used in the plastics industry for applications requiring new composite materials, and by the electronics industry for circuits, supercapacitors and batteries, and for research laboratories around the world.

 

2D Fluidics will also manufacture the VFD, which is expected to become an in-demand state-of-the-art research and teaching tool for thousands of universities worldwide, and should be a strong revenue source for the new company. 

 

Managing Director, Craig McGuckin said “First Graphene is very pleased to be partnering Professor Raston and his team in 2D Fluidics, which promises to open an exciting growth path in the world of advanced materials production. Access to this remarkably versatile invention will complement FGRs position as the leading graphene company at the forefront of the graphene revolution.” 

 

Professor Colin Raston AO FAA, Professor of Clean Technology, Flinders Institute for NanoScale Science and Technology, Flinders University said “The VFD is a game changer for many applications across the sciences, engineering and medicine, and the commercialisation of the device will have a big impact in the research and teaching arena,” Nano-carbon materials can replace metals in many products, as a new paradigm in manufacturing, and the commercial availability of such materials by 2D Fluidics will make a big impact. It also has exciting possibilities in industry for low cost production where the processing is under continuous flow, which addresses scaling up - often a bottleneck issue in translating processes into industry.

Tags:  2D Fluidics  batteries  Carbon Nanotubes  circuits  Composites  electronics  First Graphene  Graphene  Plastics  research laboratories  supercapacitors  Vortex Fluidic Device (VFD) 

Share |
PermalinkComments (0)
 

First Graphene and Swinburne University Developing New battery Technology Using Graphene

Posted By Terrance Barkan, Wednesday, February 21, 2018

Advanced materials company, First Graphene Limited (“FGR” ) has announced an update on its work with the Swinburne University of Technology (SUT) on the development of a new energy storage technology using graphene, referring to their new product as the "BEST™ Battery".

 

While it is generally accepted that lithium-ion batteries are the state-of-the-art energy storage device available for consumer products today, they are not without their issues. In particular, there are examples where they have been the cause of fires in some instances. There is a vast number of companies and research institutions working to provide safer, more reliable and longer life batteries which utilise materials other than lithium-ion. Some of these involve the use of graphene. 

 

First Graphene, through its research and licencing agreements with Swinburne University of Technology, is pursuing a significantly different path to the development of the next generation of energy storage devices. Rather than trying to improve existing chemical battery technology, it is pioneering the field of advanced supercapacitors which have the potential to change the future for energy storage forever, particularly in handheld and consumer products.

 

Using the advanced qualities of graphene, First Graphene is developing the BEST™ Battery. This energy storage device promises to be chargeable in a fraction of the time and it will be fit for purpose for at least 10 times the life of existing batteries. It will be significantly safer and more environmentally friendly. All these improvements are made possible because the science relies on physics rather than chemical reactions, and on the remarkable properties of graphene materials. 

 

The table below provides an interesting comparison of key operating parameters of the BEST™ Battery alongside existing lithium-ion batteries and existing supercapacitors available in the market. What is particularly noteworthy is the 10x increase in the energy density expected for the BEST™ Battery, when compared with supercapacitors currently on sale in the market place, and the much lower cost per Wh. These features will provide great commercial advantages.

 

Table 1: Comparison between BEST™ Target development and existing Li Ion AA Batteries and an existing commercial Supercapacitor.

 

While the exact details of the design and construction of the BEST™ Battery must remain confidential for reasons of commercial security, First Graphene have disclosed the process of manufacturing the battery involves the use of lasers to create nanopores in graphene-based materials which achieve energy densities more than 10x as great as the pre-existing technology. Practical matters being addressed include the scaling up to the size of the battery from simple laboratory demonstrations of the effectiveness of the science, to devices which will be effective substitutes for batteries used in a wide range of hand held consumer products.

 

Recent Progress 

 

The first few months of the BEST™ Battery development project entailed the recruitment of additional, highly qualified research scientists and the acquisition of specialised equipment needed to prepare and manufacture the components of the BEST™ Battery.

 

Work has commenced on the improvement of many design aspects in order to optimise the configuration of the battery, with the ultimate objective being to develop a product suitable for mass scale production. At the same time, the methodology of making the battery is being subjected to continuous experimentation to improve the effectiveness and efficiency of the materials and processes used in the device. In addition, the pilot production line for building the BEST™ Battery prototype has been set up, which enables the manufacturing of the BEST™ Battery to meet industrial standards. 

 

Swinburne recently reported that a single layer of the BEST™ Battery prototype that made by the pilot production line was able to sustain an LED globe for a period of 15-20 minutes with only a few seconds of initial charge. This is a very significant outcome, auguring well for the ultimate product which is intended to comprise much more than 100 stacked layers of graphene sheets. 

 

The Ragone plot below tracks the continuing improvements in the performance of the BEST™ Battery.

 


 

Figure 1: Ragone Plot demonstrating the progress of the BEST™ Battery development toward its goal

 

Graphene-Based Flexible Smart Watch 

 

The research being undertaken also involves the development of flexible batteries for smart watches which can be incorporated into the watchband itself. These will be light-weight and flexible, they will be able to be recharged in 1-2 minutes, and they will be fit for purpose for many tens of thousands of cycles. Information will be displayed not only on the watch face, but also on the band itself.

Figure 2: Graphene Watch – Flexible Smart Watch concept

 

Target Markets 

 

While it is intended that the BEST™ Battery development program will eventually provide suitable substitutes for many devices which currently used flat pack and cylindrical batteries, it will also provide batteries for new, innovative purposes. The thin profile of the Battery, and its flexibility, will make it suitable for use in clothing. It could also be integrated into smart watch bands, as an example, rather than having a solid block configuration. It is already showing excellent ability to convert kinetic energy into stored energy due to the speed at which it can charge i.e. simple movement of shaking can recharge the Battery. 

 

Commenting on these progress, FGR’s Managing Director Craig McGuckin said:

 

“The demonstration of full scale commerciality of the BEST™ Battery will take time, but so far the results have been very encouraging. The science has been proved at laboratory scale and now we are advancing many aspects of materials used and design processes leading to the development and optimisation of production methodology. We are very pleased that Swinburne University of Technology has advised us that the pilot production line is a world first. We are confident that the advantages offered by our technology will bring revolutionary changes to how we use batteries in the future, with added safety, efficiencies and flexibilities. The BEST™ Battery will be a serious game changer”.

 

 

Tags:  Battery  First Graphene  Li-ion  Supercapacitor  Swinburne University 

Share |
PermalinkComments (0)
 

Concrete Graphene Applications, Literally!

Posted By Terrance Barkan, Wednesday, January 10, 2018

Advanced materials company, First Graphene Limited (ASX: FGR) is working with the University of Adelaide (UoA) on graphene for industrial building products.

Graphene in Concrete

Experiments have been conducted on the use of graphene oxide (GO) being added to concrete to improve both compressive and tensile strength. However the hydrophilic and high resistivity nature of GO limits its applications in things such as ‘smart’ cement.

Due to the high aspect ratio of nano-reinforcements such as graphene and carbon nanotubes, they have the ability to arrest crack propagation in concrete (by controlling the nano-sized cracks before they form micro-sized cracks) and hence greatly improve peak toughness, making them more effective than even conventional steel bar or fibre reinforcements.

Premium Concrete Products – Smart Cement

Ultra-High Performance Concrete (UHPC) operates at such a high-performance level that it competes with steel rather than regular concrete grades. Advantages include lower lead times compared to steel. UHPC can cost in excess of $500/tonne, with enhancements such as micro-reinforcements further increasing the price.

Due to the immense importance of compression strength and other factors such as blast, ballistic and earthquake resistance, additive premiums can be significant. UHPC is over an order of magnitude more expensive than regular concrete, but in an environment where material usage and weight are such essential considerations, it can actually be cheaper to use the more expensive grades in the long run, especially factoring in the reduced maintenance costs incurred by UHPC.

The UoA is testing FGR graphene, with the aim of making “smart cement” with conductive graphene flakes which may;

i. address the concerns of cracking and corrosion, and
ii. provide conductivity for better monitoring the health of concrete structures.

The first test results indicate the addition of just 0.03% standard graphene by weight is the optimal quantity of graphene from the test conducted to date, showing a 22 - 23 % increase in compressive and tensile strength, respectively. The addition of more standard graphene does not increase or decrease the strength of the concrete material when compared to the control in this test work.

Promising Results with Favourable Economics

This initial work has yielded very promising results with very small amounts of FGR graphene required to greatly increase the strength of the materials. Determining the optimum mixing methods and concentration to develop a consistent material will be the key to further developing this project.

The focus of the next stage of the work will be trialling other concentrations of graphene in concrete, specifically loading at 0.01% and 0.1% graphene, and optimisation of the mixing procedures. New methods of incorporating graphene into the concrete mixture will also be trialled.

The graphene provided by FGR will have a range of aspect ratios (smaller sheet sizes) and will be tested over the full range of concentrations. It is anticipated this material will better disperse within the concrete mixture and therefore provide further mechanical strength improvements.

The concrete admixtures market is estimated to be worth US$18.10bn by 2020. The drivers identified for the concrete admixtures demand are growing infrastructure requirements in developing economies, improving economics of construction, and shifting preferences of population towards urbanisation.

 

Tags:  Concrete  First Graphene  Graphene  University of Adelaide 

Share |
PermalinkComments (0)
 

Graphene Fire Retardant Demonstration

Posted By Terrance Barkan, Friday, December 15, 2017

Advanced materials company, First Graphene Limited (FGR), has provided an update on its development of the graphene based FireStop™ fire retardant material.

Development of the FireStop™ material is being conducted in conjunction with the University of Adelaide as part of the Company’s participation as a Tier 1 participant in the ARC Research Hub for Graphene Enabled Industry Transformation.

The video below shows the dramatic effectiveness of FireStop™when applied to simple wooden structures. Whereas the untreated structure on the left is totally consumed by fire, the structure treated with the FireStop™ retardant doesn’t even catch fire even after five minutes of trying to light it with a blow torch.

Given that fires generally start at specific ignition points, the ability of a graphene-based retardant to stop the ignition is a key feature of the product. The FireStop™ was applied in three coats, was applied by brush and was less than 500 μm thickness.

 

 Note: There is no sound for this video.


The relevant characteristic of graphene that this demonstration highlights is the very high thermal conductivity i.e. the ability to disburse heat away from the source. FGR is highly encouraged by the results of this simple demonstration, which augers well for subsequent, more advanced and scientifically controlled demonstrations that are being undertaken.

The University of Adelaide has now received a UL-941 system for use in its workshop. It is also installing an LOI instrument for the generation of scientific data. These instruments will enable an acceleration of the test work being conducted to optimise the FireStop™ product and application methodology.

[ UL 94, the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, is a plastics flammability standard released by Underwriters Laboratories of the United States. The standard determines the material’s tendency to either extinguish or spread the flame once the specimen has been ignited. UL-94 is now harmonized with IEC 60707, 60695-11-10 and 60695-11-20 and ISO 9772 and 9773. ]

Further tests will be conducted to increase the viscosity of the product while maintaining the fire-retardant performance. This work will be the precursor to submitting FireStop™ to FGR’s own testing to the relevant fire standards and to CSIRO for independent testing in Q1 2018. In the meantime, the Company is entering negotiations with potential industry partners for the commercialisation of FireStop™.

FGR is a Corporate Member of The Graphene Council, we congratulate them on their continued commercial development!

 

Tags:  Fire  Fire Retardant  FireStop  First Graphene 

Share |
PermalinkComments (1)
 

First Graphene opens Commercial Graphene Facility

Posted By Terrance Barkan, Monday, November 27, 2017

Advanced materials company, First Graphene Limited (ASX: FGR ), officially opened its Commercial Graphene Facility (CGF) at a ceremony with Mr Josh Wilson MP, Federal Member for Fremantle, Australia on Thursday 23, November 2017.

FGR Chairman, Warwick Grigor stated “This Facility represents both the completion of one journey and the commencement of another.” The first part of the journey had commenced in May 2015 when testing of FGR’s material was undertaken at the University of Adelaide. “The tests were done, and they confirmed that not only could graphene be recovered, but of the 50 or more types of graphite that Professor Dusan Losic and his team had tested, the vein graphite (from FGR) gave the best results. ”

First Graphene Board Members  L to R; Chris Banasik, Peter Youd, Warwick Grigor and Craig McGuckin 

Mr Grigor added, “ There are two very impressive aspects of this wonderfully innovative venture. The first is the very short time frame in which it has been achieved. The second is  the very small expenditure that  has been involved. Both are  a  credit to the resourcefulness of the FGR team, led  by  our Managing   Director, Craig Mc Guckin. Through  careful management  and  sourcing  of equipment  for   this production  facility, management has been able to achieve excellent costs reductions. In many cases these savings have been up to 80%. Rather than accept off -the-shelf quotes from German suppliers, Craig has engaged with manufacturers in China to design and procure equipment at significant savings. That is what good management does for a company.

Mr Josh Wilson  MP, Federal  Member  for  Fremantle  speaking at the official  opening.

Officially opening  the  facility Mr Wilson remarked “It  really is no exaggeration to say that graphene will likely be one of the defining substances and technologies of the 21st century. It is  wonderful that the enormous potential of graphene will be explored and enabled through a production facility here in Henderson; in  the Fremantle  electorate; in the state of Western Australia. It’s exactly the kind of smart, innovative, cutting - edge business that we should be in; that we need to be in.”  

Mr Wilson went on to state “I expect that the development of processes and applications that  involve  graphene –  like   the   development  of  renewable  energy technology; like innovations in  medical science –  will have a particularly profound beneficial impact in countries that face development challenges,  including  a  number  of  countries  in our region. Making  a contribution to lifting the standard of living and the quality of life the world  over through invention and innovation is a great Australian tradition."

 

Tags:  Australia  First Graphene  graphene production 

Share |
PermalinkComments (0)
 
Page 5 of 5
1  |  2  |  3  |  4  |  5