Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: Graphene  2D materials  Batteries  Sensors  Li-ion batteries  University of Manchester  CVD  Electronics  First Graphene  graphene production  nanomaterials  graphene oxide  The Graphene Flagship  coatings  graphite  Applied Graphene Materials  Energy Storage  Haydale  Carbon Nanotubes  composites  Andre Geim  Battery  biosensors  Gratomic  Hexagonal boron nitride  optoelectronics  Standards  Versarien  3D Printing  Adrian Potts 

£1m project to field-test graphene water filters

Posted By Terrance Barkan, Thursday, September 14, 2017

UK-BASED G2O Water Technologies is to scale up production and field-test its patented graphene oxide water filters in a new £1m (US$1.3m) project.

The funding for the project has largely come from UK government research funding arm Innovate UK, with the remainder provided by G2O's project partners, including speciality chemical manufacturer William Blythe.

G2O Water Technologies’ filters can be printed using a low-cost method, or made by applying a graphene oxide coating to polymer membranes. The graphene oxide coating makes the membrane more permeable, allowing more water to pass through and meaning up to 50% less energy is needed to drive the process. The company believes that it could one day result in being able to do away with the need for pumps for membrane purification systems and rely instead on gravity.

“As we are taking a porous polymer material as the substrate, and the filtration by size exclusion is happening in the surface layers of graphene oxide, it is expected to be significantly cheaper than some current membranes due to its simplicity. However, when this is packaged into a domestic system, eliminating the need for pumps, ozone, UV etc, it means that the purification system can be significantly cheaper too, potentially extending access to clean water to more people,” said Tim Harper, G2O CEO and founder.

The company hopes to develop and market cheap domestic water purification units for use inside the home, in areas of the world where the water supply is not reliably clean, with contaminants including pesticides, heavy metals and plastic microfibres. Products could range from a simple jug to more sophisticated appliances.  Harper says the company’s system “makes obtaining clean water as simple as making a cup of filter coffee.”

The new £1m funding will allow G2O Water Technologies to develop large-scale manufacturing processes for the filters using industrial printing technology. It will work with the Centre for Process Innovation (CPI) and  its industry partners. G2O will then embark upon field testing with a major global consumer products company with a significant market share in Asia and Africa, although the company did not reveal which. The project will last for 26 months, and G2O believes that a final commercial product using its filters could ready in three years.

The funding follows a previous £700m Innovate UK grant in 2015. Over the past two years, G2O has worked with the CPI to help transfer and scale up the technology from laboratory to industry.

“G2O’s graphene filter technology has the potential to dramatically reduce the cost of treating water, thereby increasing the availability of safe drinking water. This project provides us with the ability to validate and accelerate an innovative, emerging technology that can help us develop the next generation of cost-effective systems for clean, potable water. This is key to meeting diverse, consumer demand across the globe,” said Harper.

Original article by Helen Tunnicliffe

Tags:  G2O Water Technologies  Innovate UK  Water  William Blythe 

Share |
PermalinkComments (0)
 

Who Will Win the Race for Clean Water Technologies Using Graphene?

Posted By Dexter Johnson, IEEE Spectrum, Monday, April 10, 2017

 

Image: University of Manchester

Graphene can take on at least three distinct technology approaches for producing clean water, according to Miao Yu, a professor at University of South Carolina and founder of UK-based G2O Water Technologies Ltd. as he explained to The Graphene Council last year in a interview.

In that interview, Yu said the first approach of the three is to use graphene in the creation of functional coatings. The second approach involves producing lamellar structures with nano-channels, which requires using fine layers of alternating types of materials. G2O Water is doing a bit of both of these approaches by creating a functional coating that can be applied to today’s polymer water membranes, and also creating scalable fabrication of lamellar structures of graphene oxide.

The third approach is to allow selective permeation through structural defects of single-layer graphene or graphene oxide. A group at MIT is probably the most notable example of the use of this approach in a technique they reported on three years ago. 

All of these approaches to using graphene in water applications is taking on increased interest after news came out last week that researchers from the University of Manchester have developed a graphene oxide membrane that in addition to filtering out small particles has small enough pores that it can filter out salt ions. This approach, which was published in the journal Nature Nanotechnology, falls into the approach taken by the MIT researchers.

The Manchester researchers have managed to overcome a key problem in this approach when the membranes swell up after being immersed in water for some time, allowing smaller particles to continue to pass through.

“Realization of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology,” said Rahul Nair, a professor at the University of Manchester and one of the co-authors of the research, in a press release. “This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes.”

Of course, the imprimatur of the University of Manchester on anything to do with graphene suddenly makes this latest research noteworthy. However, the final arbiter on whether this graphene approach or the others like it for either desalinating or purifying water remains squarely on the industry.

While the mainstream press--like the BBC--has seemingly ignored all other efforts for using graphene in the desalination or purification of water--setting up the Manchester research as a kind of first in the field--the trade press has been a bit more circumspect.

The publication Water & Wastewater International (WWi) has a pretty thorough assessment of the latest Manchester research and how it stacks up to other efforts for desalinating water using graphene.

While WWi remains pretty sanguine about the general prospects of using graphene for water desalination, they get some expert opinions that characterizes this latest research as something of a long shot at this point.

Graeme Pearce, principal at Membrane Consultancy Associates (MCA) told WWi in an interview: "The development at the University of Manchester aims to produce a membrane with a highly controlled character, free from defects. Given the materials used, longevity should also be good. The challenge will be whether the membrane can be effectively used with the current form factor (the spiral wound element mounted in series in long pressure vessels) and using current process design concepts.

"Alternatively, the membrane might be better exploited by a completely different approach to process design, which would be high risk and slow to introduce, but might have a much greater long term impact if the improved membrane can be exploited more efficiently."

He added: "The key issue would be to demonstrate both performance and longevity in the first instance and then establish what features of the current approach to desalination plants limit the benefits of a new membrane and what can be done to remove these impediments."

It turns out that the technology of G2O Water technologies might have the inside track at this point, according to Pearce.

He added: "This preserves the form factor and should be more easily adopted by the industry. The development is still early stage and the longevity of the coating has yet to be established, but the approach appears to be promising and initial results on performance enhancement have been encouraging. This is more likely to allow a radical optimization of existing practice rather than the potentially more revolutionary but higher risk development from Manchester."

Tags:  G2O Water Technologies  graphene oxide  membranes  University of Manchester  water desalination  water purification 

Share |
PermalinkComments (0)