Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

ZEN Graphene Solutions Announces Collaboration with Graphene Composites Ltd. to Develop a COVID-19 Virucidal Graphene-Based Composite Ink for Face Masks

Posted By Graphene Council, Thursday, April 30, 2020
ZEN Graphene Solutions Ltd. is pleased to announce an international collaboration with UK-based Graphene Composites Ltd (GC) to fight COVID-19 by developing a potential virucidal graphene-based composite ink that can be applied to fabrics including N95 face masks and other personal protective equipment (PPE) for significantly increased protection. Once the development, testing, and confirmation of the graphene ink’s virucidal ability have been completed, the ink will then be incorporated into fabrics used for PPE.

Francis Dubé, CEO of ZEN commented, “We are pleased to be collaborating with GC and be on the forefront of a new innovative technology that could contribute to combating the deadly COVID-19 virus. The development of this potential COVID-19 virucidal graphene ink is coming at a crucial time to provide effective PPE supplies for the safety of frontline workers and hospital staff.” Dr. Dubé continued, “The current N95 masks trap the virus but don’t kill it. Our testing will demonstrate if the graphene ink is an effective virucide which would kill the virus as this could make a big difference to people’s safety. We have been very impressed by the Graphene Composites team and look forward to continued collaborations.”

Sandy Chen, CEO of GC stated, “Combining the deep nanomaterials expertise of GC and ZEN with a truly collaborative approach has enabled us to do a year’s worth of R&D in a matter of weeks. Quickly developing and deploying our virucidal/germicidal ink would make a significant difference in slowing the rate of infection – thus saving many lives.”

Under the collaboration, ZEN has synthesized a silver nanoparticles functionalized graphene oxide ink at their lab in Guelph, Ontario that has been documented by previous researchers to kill earlier versions of coronavirus. Once testing is completed, the ZEN/GC graphene ink would then be incorporated into a fabric to be included into masks and filters designed by GC.

Efficacy testing of the silver-graphene oxide-based ink to kill the COVID 19 virus (SARS-CoV-2) will be conducted at Western University’s ImPaKT Facility Biosafety Level 3 lab in Ontario. In addition, the graphene ink will be tested to kill influenza A and B viruses at Biosafety Level 2 labs in the UK and US.

Tags:  Francis Dubé  Graphene  Graphene Composites  graphene oxide  nanomaterials  Sandy Chen  ZEN Graphene Solutions 

Share |
PermalinkComments (0)
 

Won’t crack under pressure: stress test reveals graphene can withstand more than one billion cycles before breaking

Posted By Graphene Council, The Graphene Council, Thursday, January 30, 2020
Graphene is a paradox: it is the thinnest material known to science, yet also one of the strongest. Now, research from U of T Engineering shows that graphene is also highly resistant to fatigue — able to withstand more than a billion cycles of high stress before it breaks.

Graphene resembles a sheet of interlocking hexagonal rings, similar to the pattern you might see in bathroom flooring tiles. At each corner is a single carbon atom bonded to its three nearest neighbours. While the sheet could extend laterally over any area, it is only one atom thick.

The intrinsic strength of graphene has been measured at more than 100 gigapascals, among the highest values recorded for any material. But materials don’t always fail because the load exceeds their maximum strength. Small repetitive stresses can weaken materials by causing microscopic dislocations and fractures that slowly accumulate over time, a process known as fatigue.

“To understand fatigue, imagine bending a metal spoon,” says Professor Tobin Filleter (MIE), one of the senior authors of the study, which was recently published in Nature Materials. “The first time you bend it, it just deforms. But if you keep working it back and forth, eventually it’s going to break in two.”

The research team — consisting of Filleter, fellow U of T Engineering professors Chandra Veer Singh (MSE) and Yu Sun (MIE), their students, and collaborators at Rice University — wanted to know how graphene would stand up to repeated stresses. Their approach included both physical experiments and computer simulations.

“In our atomistic simulations, we found that cyclic loading can lead to irreversible bond reconfigurations in the graphene lattice, causing catastrophic failure on subsequent loading,” says Singh, who along with postdoctoral fellow Sankha Mukherjee (MSE) led the modelling portion of the study. “This is unusual behaviour in that while the bonds change, there are no obvious cracks or dislocations, which would usually form in metals, until the moment of failure.”

PhD candidate Teng Cui, who is co-supervised by Filleter and Sun, used the Toronto Nanofabrication Centre to build a physical device for the experiments. The design consisted of a silicon chip etched with half a million tiny holes only a few micrometres in diameter. The graphene sheet was stretched over these holes, like the head of a tiny drum.

Using an atomic force microscope, Cui then lowered a diamond-tipped probe into the hole to push on the graphene sheet, applying anywhere from 20 to 85 per cent of the force that he knew would break the material.

“We ran the cycles at a rate of 100,000 times per second,” says Cui. “Even at 70 per cent of the maximum stress, the graphene didn’t break for more than three hours, which works out to over a billion cycles. At lower stress levels, some of our trials ran for more than 17 hours.”

As with the simulations, the graphene didn’t accumulate cracks or other tell-tale signs of stress — it either broke or it didn’t.

“Unlike metals, there is no progressive damage during fatigue loading of graphene,” says Sun. “Its failure is global and catastrophic, confirming simulation results.”

The team also tested a related material, graphene oxide, which has small groups of atoms such as oxygen and hydrogen bonded to both the top and bottom of the sheet. Its fatigue behaviour was more like traditional materials, in that the failure was more progressive and localized. This suggests that the simple, regular structure of graphene is a major contributor to its unique properties.

“There are no other materials that have been studied under fatigue conditions that behave the way graphene does,” says Filleter. “We’re still working on some new theories to try and understand this.”

In terms of commercial applications, Filleter says that graphene-containing composites — mixtures of conventional plastic and graphene — are already being produced and used in sports equipment such as tennis rackets and skis.

In the future, such materials may begin to be used in cars or in aircraft, where the emphasis on light and strong materials is driven by the need to reduce weight, improve fuel efficiency and enhance environmental performance.

“There have been some studies to suggest that graphene-containing composites offer improved resistance to fatigue, but until now, nobody had measured the fatigue behaviour of the underlying material,” he says. “Our goal in doing this was to get at that fundamental understanding so that in the future, we’ll be able to design composites that work even better.”

Tags:  Graphene  Graphene Composites  nanofabrication  Rice University  Teng Cui  Tobin Filleter  University of Toronto Engineering 

Share |
PermalinkComments (0)
 

Thomas Swan Advanced Materials announce exciting Graphene collaboration with Graphene Composites Ltd pioneering advanced protection against knife and gun-crime

Posted By Graphene Council, The Graphene Council, Wednesday, May 1, 2019
Thomas Swan is proud to collaborate with nano-materials technology manufacturer Graphene Composites Ltd to provide the graphene solution in their GC Shield™ armour products. The product is the result of a lengthy development collaboration between the companies together with the Centre for Process Innovation (CPI) using GNP-M grade graphene from Thomas Swan in the final application - an endorsement of the company’s ability to manufacture graphene in volume.

The GC Shield™ comes in a range of armour products providing lightweight, mobile protection to individuals and groups, plus effective protection for installation in large spaces. From a lightweight, flexible shield that is both bullet and stab-proof and can fit into a schoolbag, the GC Shield™ Plus has been successfully tested to stop multiple 7.62 x 51mm NATO M80 sniper bullets and AR-15 assault rifle M193 bullets fired at close range. The GC Shield™ Curtain can be deployed quickly, effectively and safely to provide protection in large spaces (e.g. school cafeterias, open plan areas, entrance halls).

Michael Edwards, head of the Advanced Materials Division at Thomas Swan said “It is always great to see an end-application that transfers into production demonstrating real-life applications for graphene – something that has been evasive in our market to date. As always there is a learning curve to be developed with a willing partner for a go-to market product, but we are always delighted to reach that point”.

Thomas Swan has a patented process to produce Multiple Layer (MLG) and Graphene Nanoplatelets (GNP) in volume at our facility in Consett, UK. Using our patented process of HighShear Liquid Phase Exfoliation licensed from Professor Jonathan Coleman’s work at Trinity College Dublin, we have further enhanced the process using our expertise at Thomas Swan, scaling-up to a 20T per year GNP capacity available today. We have the distinct advantage of being an established global player in the chemicals and materials business.

With manufacturing in the UK, a subsidiary company in the USA together with QA, logistics, regulatory and safety management, we are a leader in the field of 2D materials. Sandy Chen, CEO and founder of Graphene Composites said “Thomas Swan’s expertise in graphene manufacturing has been crucial to our success in developing our revolutionary armour products. Not only has the high quality and consistent manufacture made this possible but as a company, their willingness to collaborate closely with our Technical Team in our development processes has led to innovative and agile product design and development. This has enabled us to get our products market-ready much more quickly”.

Tags:  2D materials  Graphene  Graphene Composites  Jonathan Coleman  Michael Edwards  nanomaterials  Sandy Chen  Thomas Swan 

Share |
PermalinkComments (0)