Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Nanomaterials  Electronics  University of Manchester  Batteries  Graphene Flagship  graphene oxide  Semiconductor  coatings  First Graphene  Graphite  Healthcare  CVD  Li-ion batteries  energy storage  carbon nanotubes  composites  optoelectronics  Versarien  Applied Graphene Materials  Battery  graphene production  nanoelectronics  photonics  The Graphene Flagship  Medical  polymers  Haydale 

CRIL wins EUR140,000 EU Graphene Flagship funding

Posted By Graphene Council, Wednesday, February 19, 2020
Frontier IP, a specialist in commercialising university intellectual property, today announces that portfolio company Cambridge Raman Imaging Limited  has been awarded €140,000 by the European Union's Graphene Flagship to accelerate development of its innovative graphene-enabled scanning Raman microscope.

The Company, a spin out from the University of Cambridge and the Politecnico di Milano in Italy, was incorporated in March 2018 to develop and commercialise the joint work of both universities to create graphene-based ultra-fast lasers. Frontier IP owns 33.3 per cent of the Company.

Cambridge Raman Imaging is initially developing a Raman-imaging scanning microscope to diagnose and track tumors, and for other detection applications.

The technology uses graphene to modulate ultra-short pulses of light that can be synchronised in time and are much lower cost than conventional systems.

The Company's scanning microscope will target real-time digital images of fresh tissue samples to detect and show the extent of tumours, their response to drug treatments and to allow surgeons to see if a cancer has been completely removed.

Existing histopathology technologies mean samples taken from a patient must be stained and sent to a laboratory for analysis, including during operations. Cambridge Raman Imaging's lasers will be compact enough to use in an operating theatre, speeding up progress. The global market size for tumour analysis and tracking has been estimated to be £9 billion a year, according to Grandview Research.

Potential future applications include endoscopic examination, scanning body fluids for pathogens or tumour cells, and imaging semiconductors or proteins.

The Graphene Flagship is one of the largest research initiatives ever funded by the EU, tasked with bringing together academic and industrial researchers to take graphene from academia and into society.

Paul Mantle, Cambridge Raman Imaging director, said: "This technology has the potential to revolutionise patient care by giving the clinician accurate information on tumour type and response to treatment."

Neil Crabb, chief executive officer of Frontier IP Group, said: "Cambridge Raman Imaging is our first spin out to develop a graphene-based technology. Although the first applications are in healthcare, we believe there could be broader applications in other industries. We're delighted the EU Graphene Flagship recognises the potential of the technology with the grant award to accelerate its development "

Tags:  CRIL  Frontier IP  Graphene  Graphene Flagship  Healthcare  Medical  Neil Crabb  Paul Mantle 

Share |
PermalinkComments (0)
 

New graphene amplifier has been able to unlock hidden frequencies in the electromagnetic spectrum

Posted By Graphene Council, Thursday, February 6, 2020
Researchers have created a unique device which will unlock the elusive terahertz wavelengths and make revolutionary new technologies possible.

Terahertz waves (THz) sit between microwaves and infrared in the light frequency spectrum, but due to their low-energy scientists have been unable to harness their potential. The conundrum is known in scientific circles as the terahertz gap.

Being able to detect and amplify THz waves (T-rays) would open up a new era of medical, communications, satellite, cosmological and other technologies.

One of the biggest applications would be as a safe, non-destructive alternative to X-rays. However, until now, the wavelengths – which range between 3mm and 30μm – have proved impossible to utilise due to relatively weak signals from all existing sources.

A team of physicists has created a new type of optical transistor – a working THz amplifier – using graphene and a high-temperature superconductor.

The physics behind the simple amplifier replies on the properties of graphene, which is transparent and is not sensitive to light and whose electrons have no mass. It is made up of two layers of graphene and a superconductor, which trap the graphene massless electrons between them, like a sandwich.

The device is then connected to a power source. When the THz radiation hits the graphene outer layer, the trapped particles inside attach themselves to the outgoing waves giving them more power and energy than they arrived with – amplifying them.

Professor Fedor Kusmartsev, of Loughborough’s Department of Physics, said: “The device has a very simple structure, consisting of two layers of graphene and superconductor, forming a sandwich. “As the THz light falls on the sandwich it is reflected, like a mirror. “The main point is that there will be more light reflected than fell on the device.

“It works because external energy is supplied by a battery or by light that hits the surface from other higher frequencies in the electromagnetic spectrum.

“The THz photons are transformed by the graphene into massless electrons, which, in turn, are transformed back into reflected, energised, THz photons.

“Due to such a transformation the THz photons take energy from the graphene – or from the battery – and the weak THz signals are amplified.”

The breakthrough – made by researchers from Loughborough University, in the UK; the Center for Theoretical Physics of Complex Systems, in Korea; the Micro/Nano Fabrication Laboratory Microsystem and THz Research Center, in China and the AV Rzhanov Institute of Semiconductor Physics, in Russia – has been published in Physical Review Letters, in the journal, American Physical Society (APS).

The team is continuing to develop the device and hopes to have prototypes ready for testing soon. Prof Kusmartsev said they hope to have a working amplifier ready for commercialisation in about a year. He added that such a device would vastly improve current technology and allow scientists to reveal more about the human brain.

“The Universe is full of terahertz radiation and signals, in fact, all biological organisms both absorb and emit it. “I expect, that with such an amplifier available we will be able to discover many mysteries of nature, for example, how chemical reactions and biological processes are going on or how our brain operates and how we think.

“The terahertz range is the last frequency of radiation to be adopted by humankind. “Microwaves, infrared, visible, X-rays and other bandwidths are vital for countless scientific and technological advancements.

“It has properties which would greatly improve vast areas of science such as imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control and chemical and biological identification.

“The device we have developed will allow scientists and engineers to harness the illusive bandwidth and create the next generation of medical equipment, detection hardware and wireless communication technology.”

Tags:  amplifier  Fedor Kusmartsev  Graphene  Healthcare  Loughborough University  Medical 

Share |
PermalinkComments (0)
 

Tuning of optical absorbance of graphene quantum dots by high magnetic fields

Posted By Graphene Council, Monday, January 27, 2020

Recently, a Chinese research team reported (Biomaterials, "Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window") the synthesis of graphene quantum dots (GQDs) under an external high magnetic field (HMF) and their applications in photothermal therapy (PTT).

GQDs plays an increasingly important role in medical areas due to tunable optical behavior, good chemical stability, excellent biocompatibility and easy removal by the kidney.

However, the optical absorption of reported GQDs is mainly concentrated in the NIR-I region, which limits their PTT application in the longer wavelength region ( >1000 nm) because of the absorption and scattering of skin and tissue.

At present, methods to adjust the absorbance of GQDs mainly include surface passivation, heteroatom doping and size correction, which cannot achieve NIR-II absorbance of GQDs.

By introducing HMF during the preparation of GQDs, the joint team used phenol molecules as single precursors and hydrogen peroxide as oxidant, and the resulting 9T-GQDs were expected to possess strong absorbance in NIR-II region for improvement of their applications in PTT.

Compared with the GQDs obtained without HMF (named as 0T-GQDs), 9T-GQDs showed obvious absorbance in NIR-II region (∼1070 nm).

At the same time, 9T-GQDs had a fluorescence quantum yield of 16.67% and a photothermal conversion efficiency of 33.45%. In vivo experiments showed that 9T-GQDs had a significant inhibitory effect on tumor growth in mice in the treatment of photothermal cancer guided by NIR-II region imaging.

The joint research team was led by Prof. WANG Hui with High Magnetic Field Laboratory of the Chinese Academy of Sciences, Prof. CHEN Qianwang with University of Science and Technology of China and Prof. NIE Rongrong from Medical School of Nanjing University

Tags:  CHEN Qianwang  Chinese Academy of Sciences  Graphene  Healthcare  NIE Rongrong  WANG Hui 

Share |
PermalinkComments (0)
 

Graphene Industry Showcase in Manchester

Posted By Graphene Council, Monday, December 16, 2019

This week Graphene@Manchester hosted a jam-packed two-day (10-11 December) event showcasing the hottest topics in the field of graphene.

The event saw over 100 delegates take to Manchester for a chance to find out how they can benefit from working with the one-atom-thick material.

Featuring talks from BAC, inov-8 and Lifesaver, delegates were able to witness first hand the practical applications of graphene and 2D materials.

The showcase also featured an exhibition of some of the newest products and prototypes using the revolutionary material such as water filtration devices and hydrogels used for crop production to suitcases and doormats as well as the BAC Mono R- the first production car to use graphene-enhanced carbon fibre in each body panel.

Delegates also had the opportunity to participate in practical hands on workshops in the Graphene Engineering Innovation Centre (GEIC) focusing on subjects such as energy, printed electronics, health and safety and standards and characterisation.

James Baker, CEO Graphene@Manchester said: “We are now seeing rapid developments and an increasing change of pace over the last year, dramatically changing the graphene landscape. More products are entering the market using graphene and we’re starting to see real-world benefits living up to the early excitement of just a few years ago.

With the National Graphene Institute and GEIC, our infrastructure is designed to work in collaboration with industry partners to create, test and optimise new concepts for delivery to market.”

“We are now seeing rapid developments and an increasing change of pace over the last year, dramatically changing the graphene landscape.„

James Baker, CEO Graphene@Manchester

Follow me on Twitter(opens in new window)

Tuesday evening also offered a rare chance to hear from Nobel laureate Professor Sir Andre Geim, on his creative approach to scientific research, from levitating frogs to the fascinating phenomena of what happens to discarded graphite after graphene has been made.

The GEIC focuses on industry-led application development in partnership with academics. It will fill a critical gap in the graphene and 2D materials ecosystem by providing facilities which focus on pilot production, characterisation, together with application development in composites, energy, solution formulations and coatings, electronics and membranes.

Tags:  2D materials  Electronics  Graphene  Graphene Engineering Innovation Centre  Healthcare  James Baker  University of Manchester 

Share |
PermalinkComments (0)
 

Jose A. Garrido’s vision: graphene bioelectronic eye implants

Posted By Graphene Council, Thursday, December 12, 2019
Jose A. Garrido is an ICREA Research Professor and leader of the Advanced Electronic Materials and Devices group at Graphene Flagship partner ICN2, in Barcelona. He is also the Deputy Leader of the Graphene Flagship's Biomedical Technologies Work Package, and he has a vision: a world in which doctors can cure diseases and disabilities using biomedical implants enabled by novel electronic materials like graphene.

His pioneering work on graphene-enabled retinal implants, which aim to provide artificial vision to patients with retinal degeneration, is internationally recognised – Garrido and his collaborators have recently been awarded a €1 million grant by the la Caixa Foundation to fund their research. He plans to use the money to enable an ambitious three-year project to design the next generation of retinal prostheses using graphene-based electrodes.

I spoke with Garrido at the Graphene Connect event in Barcelona, this November, and gained some fantastic insights into the work he's doing and his ideas for the future of medical bioelectronic devices.

What motivated you to start working on retinal implants?


In general, I'm very interested in merging electronics with biology to solve health problems. It started before trying to solve vision problems – in general, I've always been interested in how we could use electronics to help patients. But years ago, some people I was working with in France made me start thinking about the problem of blindness, and how it affects people. I thought that this would be a good bench test for our technologies, and a great platform for me to try to understand the challenges of restoring vision. I wanted to investigate how graphene electronics could solve these challenges.

Why use graphene?

Well, firstly, I started with other materials. Years ago, I was working with materials that are also chemically resistant, such as semiconductors like gallium nitride, and then I moved to diamond because it was stable as well. However, for each of these materials, we always had some sort of trouble! Either the flexibility was a problem, the material was not sensitive enough, or we couldn't inject sufficient charge. But when graphene came, everything changed. The fact is, we haven't found a reason not to work with graphene yet. It has a combination of properties that make it very attractive.

What makes graphene so good for biomedical devices?

Firstly, for this application, I believe the ability to integrate graphene with flexible technologies is the most important. You need to integrate it into a flexible substrate and do all the fabrication and microfabrication required to produce your device.

It also needs to be able to interface with the nervous system, to stimulate and to monitor electrical activity. In order to have a proper interface with the nervous system, you can't just have either recording or simulation. You need both to enable bidirectional communication. So far, graphene is very good at stimulating and recording nervous tissue. We can easily integrate it into flexible substrates, and it's a durable material when exposed to a harsh environment.

Could you explain to me how the retinal implants function in layman's terms?

We're trying to help patients who have degenerated photoreceptors. This happens in several neurodegenerative diseases such as retinitis pigmentosa or age-related macular degeneration. But this degeneration does not mean that the whole retina is degenerated. There are some parts of the retina that are still intact, and those are still connected to the optical nerve.

One solution is to have photoreceptors which stimulate the intact part of the retina, and then transfer that information through the optical nerve to the visual cortex.

We're taking a different approach. We don't use the photoreceptors – instead, we plan to implant an array of graphene-based electrodes on the retina. These electrodes mimic photoreceptor stimulation with an electrical impulse. It works like this: an image is captured with an external camera, then this information is sent wirelessly to the implant, received in the form of pulses applied to each of the electrodes on the implant. This effectively copies the function of the photoreceptors and should allow the patient to see a pixelated image.

What would you say are the challenges going forward?

When it comes to integrating graphene, we're at a pre-industrial level. But over the last four years, thanks to the Graphene Flagship, among other projects, we've gone from being research-orientated to actually applying that research. We have pre-industrial device prototypes, and we do fabrication in cleanrooms – the same cleanrooms we use for research. For me, I think that that integration and demonstration of the prototypes is not the challenge. The challenge is industrialisation.

How can we jump from what we do in a pre-industrial cleanroom to large-scale fabrication? Who is going to mass-produce these technologies? Right now, there's no one in Europe who can do this type of production on such a large scale, with the required levels of standardisation.

That's the main challenge for a lot of applications of graphene, and we're all suffering from the same problems. The Graphene Flagship have now realised this, and that's why they have launched the Standardisation and Validation services, and will soon launch the Experimental Pilot Line. This is a very important effort, but it will have to be matched by industry.

What ultimately led to you being awarded the grant?

Competition was very tough, I can tell you! They really valued the multidisciplinary team that we put together – it's really unique to have such a strong team with such different backgrounds, sharing the costs and responsibilities. Each of us was an expert in our field, and we just really wanted to work together. Experts in optical imaging were from ICFO, experts in electronics and ASIC design came from IFAE, clinicians were from the Barraquer Foundation, and the Paris Vision Institute provided experts in retina electrophysiology.

How are you going to use the €1 million grant?

We need to develop some understanding of the challenges. The challenges are not only at the interface with the tissue – there are challenges with the wireless transmission, with the design of the specialized chip controlling the whole system, and with the powering of the device. How do you power a device that small?

This grant is going to be crucial to bring together such a multidisciplinary team. A team that knows about optics, wireless transmission, neural interfaces, materials science and biology. Of course, we're going to divide the pie into many pieces. But we hope that when we put these pieces together, the project will be a great success.

Finally, where do you see graphene-enabled retinal implants in 10 years?

In 10 years, the project should be a commercial success! I think that in just three years, we should have demonstrated some of the hypotheses that we are proposing now. Without doubt, there's a huge amount of work to be done if we want to help patients to recover part of their lost vision, not to mention the promise of a complete recovery – but our technology will also lead to significant improvements in many other fields where medical neural implants are currently used, including brain surgery, epilepsy monitoring, and movement disorders such as Parkinson's disease.

Tags:  Bioelectronics  electronic materials  Graphene  Graphene Flagship  Healthcare  Jose A. Garrido 

Share |
PermalinkComments (0)
 

Using electronics to solve common biological problems

Posted By Graphene Council, Wednesday, December 4, 2019
Researchers from multiple disciplines are working together at KAUST to develop bioelectronics that can detect diseases, treat cancers and track marine animals; they may even discover the next generation of computing systems.

Cancer-killing magnets

Jurgen Kosel is an electrical engineer who loves to play with magnets. His research group has developed a technique to fabricate unique magnetic iron-oxide nanowires that can kill cancer cells1.

“Certain kinds of iron-based magnetic nanoparticles were approved many years ago by the U.S. Food and Drug Administration for use inside the human body. They are regularly used as contrast agents in magnetic resonance imaging and as nutritional supplements for people with iron deficiency,” says Kosel.

The magnetic nanoparticles currently in use are spherical in shape. Kosel and his team developed wire-shaped magnetic nanoparticles that can be rotated like a compass needle, creating a pore in cancer cell membranes that induces natural cell death. These cancer-killing nanowires can be made even more effective when coated with an anti-cancer drug or heated with a laser. They are "eaten" by cancer cells, and once released inside, they can wreak havoc.

Kosel has been working closely with cell biologist Jasmeen Merzaban, and more recently, with organic chemist Niveen Khashab to "functionalize" the surfaces of his magnetic nanowires to ensure the body’s immune system does not treat them as foreign. They are also working on preventing the wires from sticking together and on targeting cancer cells more specifically by coating them with antibodies that recognize specific antigens on their cell membranes.

Kosel has also worked with electrical engineer Muhammad Hussain to use magnets for improving the safety of cardiac catheters. They have developed a flexible magnetic sensor that is sensitive enough to detect the Earth’s magnetic field. When these sensors are placed on the tip of a cardiac catheter, for example, clinicians can detect its orientation inside blood vessels. This enables them to direct it where it is needed in order to insert a stent, for example, to relieve blockage in a heart artery. This reduces the need for prolonged doses of X-rays and contrast dyes during procedures like coronary angioplasty.

Disease detection

“Over the past 50 years, the 500-billion-dollar semiconductor industry has mainly focused on two applications: computing and communications,” says KAUST electrical engineer, Khaled Salama. “But this technology holds a lot of promise for other areas, including medical research, as people are living longer and needing more care. We need a paradigm shift to leverage some of the technologies we’ve developed for use in this area.”

Salama has developed a sensor that can detect "C-reactive proteins," a biomarker of cardiovascular disease2. He’s done this by functionalizing electrodes with nanomaterials and gold nanoparticles to improve their sensitivity. The electrodes give a signal that is proportional to the amount of C-reactive protein in a blood sample. His group developed a unique process that 3D prints the microfluidic channels that deliver samples to the sensor for biological detection.

Elsewhere at KAUST, Sahika Inal is developing a device that can make life easier for diabetics.

Inal comes from a textile manufacturing background, but her studies on the electrical properties of polymers, which are biocompatible, have led her down the route of bioelectronics. 

Her team has developed inkjet-printed, disposable, polymer-based sensors that can measure glucose levels in saliva3. “We inkjet-print conducting polymers. The biological ink contains the enzymes used for glucose sensing, an encapsulation layer that protects the enzymes, a layer that only allows glucose penetration and an insulating layer to protect the electronics,” she explains. “And then you have a paper-based sensor within a few minutes!”

Inal is also developing other biochemical sensors that can generate their own energy from compounds already present in the body to power implantable devices, such as cardiac pacemakers.

“To conduct impactful bioelectronics work, I need to be in an environment where there are biologists, the people who can give me feedback on what I develop,” says Inal.

Bio-inspired computers and animal tracking
Bioelectronics not only encompass electronic devices designed to solve biological problems, they are also electronic solutions inspired by biology.

Khaled Salama is interested in a relatively new type of bio-inspired device called a "memristor"4. These are electrical components inspired by the neural networks and synapses of the brain. Researchers hope they will lead to the next generation of computing systems and that they will be better equipped to very rapidly process huge amounts of data. Salama has developed an approach that improves their computational efficiency while reducing power consumption in these typically energy-intensive devices.

Sensing data in harsh marine environments can be particularly challenging, says Kosel. Researchers have often resorted to electronic tags placed on large marine animals to track their movements. They also use electronic sensors to conduct flow, salinity, pressure and temperature measurements in the sea. Smaller, lighter, less power-hungry tags are needed to resist corrosion, and withstand biofouling, a bacterial crust that forms on almost anything that stays in the sea for too long.

Kosel’s solution was to develop graphene sensors fabricated with a single-step laser-printing technique for marine applications. These laser-induced graphene sensors are resistant to corrosion and can survive high temperatures. They are very light and flexible, making them suitable for attaching to smaller marine animals. They also developed a technique5 that involves conducting high-frequency measurements that allow them to withstand the effects of an accumulating biofouling layer.

The group have started a conference, which will be held annually at KAUST. Last year, among the many esteemed attendees was George Malliaras, a Prince Philip Professor of Technology at the University of Cambridge. Malliaras praised the university for its world-class instrumentation, access to excellent collaborations within the campus and mechanisms to collaborate with people abroad. He says, "Taken together, these attributes have made KAUST very successful at addressing some of the most important problems that humanity faces today." 

Tags:  Bioelectronics  George Malliaras  Graphene  Healthcare  Jasmeen Merzaban  Jurgen Kosel  Khaled Salama  King Abdullah University of Science and Technology  Muhammad Hussain  nanoparticles  Niveen Khashab  Sahika Inal  semiconductor  University of Cambridge 

Share |
PermalinkComments (0)
 

Smog-eating graphene composite reduces atmospheric pollution

Posted By Graphene Council, Wednesday, December 4, 2019
Graphene Flagship partners the University of Bologna, Politecnico di Milano, CNR, NEST, Italcementi HeidelbergCement Group, the Israel Institute of Technology, Eindhoven University of Technology, and the University of Cambridge have developed a graphene-titania photocatalyst that degrades up to 70% more atmospheric nitrogen oxides (NOx) than standard titania nanoparticles in tests on real pollutants.

Atmospheric pollution is a growing problem, particularly in urban areas and in less developed countries. According to the World Health Organization, one out of every nine deaths can be attributed to diseases caused by air pollution. Organic pollutants, such as nitrogen oxides and volatile compounds, are the main cause of this, and they are mostly emitted by vehicle exhausts and industry.

To address the problem, researchers are continually on the hunt for new ways to remove more pollutants from the atmosphere, and photocatalysts such as titania are a great way to do this. When titania is exposed to sunlight, it degrades nitrogen oxides – which are very harmful to human health – and volatile organic compounds present at the surface, oxidising them into inert or harmless products.

Now, the Graphene Flagship team working on photocatalytic coatings, coordinated by Italcementi, HeidelbergCement Group, Italy, developed a new graphene-titania composite with significantly more powerful photodegradation properties than bare titania. "We answered the Flagship's call and decided to couple graphene to the most-used photocatalyst, titania, to boost the photocatalytic action," comments Marco Goisis, the research coordinator at Italcementi. "Photocatalysis is one of the most powerful ways we have to depollute the environment, because the process does not consume the photocatalysts. It is a reaction activated by solar light," he continues.

By performing liquid-phase exfoliation of graphite – a process that creates graphene – in the presence of titania nanoparticles, using only water and atmospheric pressure, they created a new graphene-titania nanocomposite that can be coated on the surface of materials to passively remove pollutants from the air. If the coating is applied to concrete on the street or on the walls of buildings, the harmless photodegradation products could be washed away by rain or wind, or manually cleaned off.

To measure the photodegradation effects, the team tested the new photocatalyst against NOx and recorded a sound improvement in photocatalytic degradation of nitrogen oxides compared to standard titania. They also used rhodamine B as a model for volatile organic pollutants, as its molecular structure closely resembles those of pollutants emitted by vehicles, industry and agriculture. They found that 40% more rhodamine B was degraded by the graphene-titania composite than by titania alone, in water under UV irradiation. "Coupling graphene to titania gave us excellent results in powder form – and it could be applied to different materials, of which concrete is a good example for the widespread use, helping us to achieve a healthier environment. It is low-maintenance and environmentally friendly, as it just requires the sun's energy and no other input," Goisis says. But there are challenges to be addressed before this can be used on a commercial scale. Cheaper methods to mass-produce graphene are needed. Interactions between the catalyst and the host material need to be deepened as well as studies into the long-term stability of the photocatalyst in the outdoor environment.

Ultrafast transient absorption spectroscopy measurements revealed an electron transfer process from titania to the graphene flakes, decreasing the charge recombination rate and increasing the efficiency of reactive species photoproduction – meaning more pollutant molecules could be degraded.

Xinliang Feng, Graphene Flagship Work Package Leader for Functional Foams and Coatings, explains: "Photocatalysis in a cementitious matrix, applied to buildings, could have a large effect to decrease air pollution by reducing NOx and enabling self-cleaning of the surfaces – the so-called "smog-eating" effect. Graphene could help to improve the photocatalytic behaviour of catalysts like titania and enhance the mechanical properties of cement. In this publication, Graphene Flagship partners have prepared a graphene-titania composite via a one-step procedure to widen and improve the ground-breaking invention of "smog-eating" cement. The prepared composite showed enhanced photocatalytic activity, degrading up to 40% more pollutants than pristine titania in the model study, and up to 70% more NOx with a similar procedure. Moreover, the mechanism underlying this improvement was briefly studied using ultrafast transient absorption spectroscopy."

Enrico Borgarello, Global Product Innovation Director at Italcementi, part of the HeidelbergCement Group, one of the world's largest producers of cement, comments: "Integrating graphene into titania to create a new nanocomposite was a success. The nanocomposite showed a strong improvement in the photocatalytic degradation of atmospheric NOx boosting the action of titania. This is a very significant result, and we look forward to the implementation of the photocatalytic nanocomposite for a better quality of air in the near future."

The reasons to incorporate graphene into concrete do not stop here. Italcementi is also working on another product – an electrically conductive graphene concrete composite, which was showcased at Mobile World Congress in February this year. When included as a layer in flooring, it could release heat when an electrical current is passed through it. Goisis comments: "You could heat your room, or the pavement, without using water from a tank or boiler. This opens the door to innovation for the smart cities of the future – particularly to self-sensing concrete," which could detect stress or strain in concrete structures and monitor for structural defects, providing warning signals if the structural integrity is close to failure.

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel, adds: "An ever-increasing number of companies are now partners, or associate members of the Graphene Flagship, since they recognize the potential for new and improved technologies. In this work, Italcementi, leader in Italy in the field of building materials, demonstrated a clear application of graphene for the degradation of environment pollutants. This can not only have commercial benefits, but, most importantly, benefit of society by resulting in a cleaner and healthier environment"

Tags:  Andrea C. Ferrari  Eindhoven University of Technology  Enrico Borgarello  Graphene  Graphene Flagship  Healthcare  HeidelbergCement Group  Israel Institute of Technology  Italcementi  nanoparticles  University of Bologna  University of Cambridge  Xinliang Feng 

Share |
PermalinkComments (0)
 

Science snapshots from Berkeley Lab

Posted By Graphene Council, Monday, December 2, 2019
A Matchmaker for Microbiomes

Microbiomes play essential roles in the natural processes that keep the planet and our bodies healthy, so it's not surprising that scientists' investigations into these diverse microbial communities are leading to advances in medicine, sustainable agriculture, cheap water purification methods, and environmental cleanup technology, just to name a few. However, trying to determine which microbes contribute to an important geochemical or physiological reaction is both incredibly challenging and slow-going, because the task involves analyzing enormous datasets of genetic and metabolic information to match the compounds mediating a process to the microbes that produced them.

But now, researchers have devised a new way to sort through the information overload.

Writing in Nature Methods, a team led by UC San Diego describes a neural network-based approach called microbe-metabolite vectors (mmvec), which uses probabilities to identify the most likely relationship of co-occurring microbes and metabolites. The team demonstrates how mmvec can outperform traditional correlation-based approaches by applying mmvec to datasets from two well-studied microbiomes types - those found in desert soils and cystic fibrosis patients' lungs - and gives a taste of how the approach could be used in the future by revealing relationships between microbially-produced metabolites and inflammatory bowel disease.

"Previous statistical tools used to estimate microbe-metabolite correlations performed comparably to random chance," said Marc Van Goethem, a postdoctoral researcher who is one of three study authors from Berkeley Lab. "Their poor performance led to the detection of spurious relationships and missed many true relationships. Mmvec is a powerful new tool that accurately links metabolite and microbial abundances to solve this problem. There could be wide-ranging applications from clinical trials to environmental engineering. Ultimately, mmvec will allow us to begin moving away from simple pattern recognition towards unravelling mechanisms."

When Solids and Liquids Meet: In Nanoscale Detail

How a liquid interacts with the surface of a solid is important in batteries and fuel cells, chemical production, corrosion phenomena, and many biological processes.

To better understand this solid-liquid interface, researchers at Berkeley Lab developed a platform to explore these interactions under real conditions ("in situ") at the nanoscale using a technique that combines infrared light with an atomic force microscopy (AFM) probe. The results were published in the journal Nano Letters.

The team explored the interaction of graphene with several liquids, including water and a common battery electrolyte fluid. Graphene is an atomically thin form of carbon. Its single-layer atomic structure gives the material some unique properties, including incredible mechanical strength and high electrical conductivity.

Researchers used a beam of infrared light produced at Berkeley Lab's Advanced Light Source and they focused it at the tip of an AFM probe that scanned across a section of graphene in contact with the liquids. The infrared technique provides a nondestructive way to explore the active nanoscale chemistry of the solid-liquid interface.

By measuring the infrared light scattered from the probe's tip, researchers collected details about the chemical compounds and the concentration of charged particles along the solid-liquid interface. The same technique, which revealed hidden features at this interface that were not seen using conventional methods, can be used to explore a range of materials and liquids.

Researchers from the Lab's Materials Sciences Division, Molecular Foundry, and Energy Storage and Distributed Resources Division participated in the study. The Molecular Foundry and Advanced Light Source are DOE Office of Science user facilities.

Underwater telecom cables make superb seismic network

Fiber-optic cables that constitute a global undersea telecommunications network could one day help scientists study offshore earthquakes and the geologic structures hidden deep beneath the ocean surface.

In a recent paper in the journal Science, researchers UC Berkeley, Lawrence Berkeley National Laboratory (Berkeley Lab), Monterey Bay Aquarium Research Institute (MBARI), and Rice University describe an experiment that turned 20 kilometers of undersea fiber-optic cable into the equivalent of 10,000 seismic stations along the ocean floor. During their four-day experiment in Monterey Bay, they recorded a 3.5 magnitude quake and seismic scattering from underwater fault zones.

Their technique, which they had previously tested with fiber-optic cables on land, could provide much-needed data on quakes that occur under the sea, where few seismic stations exist, leaving 70% of Earth's surface without earthquake detectors.

"This is really a study on the frontier of seismology, the first time anyone has used offshore fiber-optic cables for looking at these types of oceanographic signals or for imaging fault structures," said Jonathan Ajo-Franklin, a geophysics professor at Rice University in Houston and a faculty scientist at Berkeley Lab. "One of the blank spots in the seismographic network worldwide is in the oceans."

Tags:  atomic force microscopy  Berkeley Lab  disease  fuel cells  Graphene  Healthcare  Jonathan Ajo-Franklin  journal Science  Marc Van Goethem  microbiomes  Molecular Foundry  Monterey Bay Aquarium Research Institute  Nano Letters  nanoscale  Rice University  UC San Diego 

Share |
PermalinkComments (0)
 

Graphene activates immune cells helping bone regeneration in mice

Posted By Graphene Council, Thursday, November 28, 2019
Graphene has been used for many years in the aeronautics and automotive industries and is even used to create new composites. However, it still has a long way to go to offer the consumer the revolutionary applications promised since Andre Geim and Konstantin Novoselov received the Nobel Prize in Physics in 2010. A team of researchers from several Italian universities within the Graphene Flagship Consortium intends to change this and apply it to regenerative medicine therapies.

Publications about the biomedical applications of graphene-based materials have increased in recent years. So says the researcher from Graphene Flagship partner University of Padua (Italy) Lucia Gemma Delogu, who considers that this is due to its "incredible" physicochemical properties, a long list that ranges from its high flexibility and resistance to its good conductivity, both electrical and thermal.

Delogu and her team have worked to take advantage of the material in the field of biomedicine. Their study, published this year in Nanoscale, shows how the immune properties of graphene allow bone tissue to regenerate in mice. This is possible through nano-tools that can activate or deactivate the immune response, an approach that is of great interest for cancer therapies and tissue engineering.

"Graphene-based materials can improve bone regeneration, a complex process that requires interaction between immune and skeletal cells," Delogu explains to Sinc. In the study, the researchers combined a type of graphene oxide with calcium phosphate, a substance capable of activating this regeneration.

"The injection of the graphene-based material into the tibia of mice showed an improvement in the bone mass in the area and in bone formation, suggesting that the combination is capable of activating monocytes to induce osteogenesis," continues the researcher.

How does the body respond to graphene?

Delogu is also the coordinator of the G-Immunomics project, whose objective is to analyse the impact of graphene on the health of living beings, with a view to its possible biomedical applications. G-Immunomics is one of the Partnering Projects of the Graphene Flagship, a European consortium of more than 150 research centres and companies, with a budget of 1,000 million euros and the goal of taking graphene and related materials towards application.

"The use of graphene in biomedicine may revolutionize medical protocols with new theranostic approaches," a concept that merges the terms "therapy" and "diagnosis" in the context of personalized medicine. "If we learn how graphene interacts with our immune system, we will be able to explore much more specific therapies for the treatment of diseases," she says.

The researcher explains that these interactions are complex, so it is still "an image that lacks several colours." By injecting a material, it comes into contact with the immune cells in the blood, which means that studying the impact of graphene on the immune response is "fundamental".

For this reason, Delogu's team is also studying how graphene can stimulate or suppress the immune response. "Our research wants to show a broad picture of the interaction of immune cells in blood with layered materials such as those based on graphene," with the ultimate goal of their possible to apply in biomedicine efficiently but also safely.

Graphene against osteoporosis
Diseases related to bone loss, such as osteoporosis, are a problem for millions of people worldwide. The World Health Organisation estimates that, in Europe alone, 22 million women and 5.5 million men aged 50-84 suffer from osteoporosis.

"Our preclinical research reveals that functionalized graphene may offer a medical opportunity to fight these bone-related diseases," says Delogu. "By promoting bone regeneration, they could also be used to improve the healing of bone wounds and shorten their duration."

Even, she says, "to combat bone loss suffered by astronauts due to lack of gravity". In this área, Delogu is involved in the project WHISKIES recently funded by the European Space Agency.

For all these reasons, she is confident that graphene can a have a future in biomedicine "We are at an early stage, but we hope that the work will open the door to real clinical applications for graphene-based materials," she says. Her dream is to explore the immunological potential of graphene in other fields of regenerative medicine.

Tags:  Andre Geim  Graphene  Healthcare  Konstantin Novoselov  Lucia Gemma Delogu  Medical  University of Padua 

Share |
PermalinkComments (0)
 

Global Graphene Group Joins EU REACH Consortium

Posted By Graphene Council, Monday, November 18, 2019
Updated: Wednesday, November 20, 2019
Global Graphene Group (G3) continues its leadership in the graphene industry by joining the European Union’s Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) graphene consortium. A member of G3’s executive team represented the company in Frankfurt, Germany, at the November 14 REACH consortium meeting.

G3 is one of only three companies actively engaged with the National Institute for Occupational Safety and Health (NIOSH) to participate in studies on potential exposure sources and recommendations for improved safety practices when dealing with graphene.

REACH focuses on how chemicals in products are handled, and their potential impact on the environment and human health. It works with companies that manufacture products in or import products to Europe to address chemicals that could have a negative effect.

“Global Graphene Group does business with European customers,” said John Davis, G3 COO. “It is vital to our continued success in the EU region to be REACH certified. Joining the REACH consortium allows G3 to take an active role in how graphene solutions are handled in Europe, and help shape the trajectory of the graphene industry.”

Tags:  Global Graphene Group  Graphene  Healthcare  John Davis  NIOSH 

Share |
PermalinkComments (0)
 
Page 1 of 2
1  |  2