Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

World’s smallest accelerometer points to new era in wearables, gaming

Posted By Graphene Council, The Graphene Council, Wednesday, September 11, 2019
Updated: Friday, September 6, 2019
In what could be a breakthrough for body sensor and navigation technologies, researchers at KTH have developed the smallest accelerometer yet reported, using the highly conductive nanomaterial, graphene.

Each passing day, nanotechnology and the potential for graphene material make new progress. The latest step forward is a tiny accelerometer made with graphene by an international research team involving KTH Royal Institute of Technology, RWTH Aachen University and Research Institute AMO GmbH, Aachen.

Among the conceivable applications are monitoring systems for cardiovascular diseases and ultra-sensitive wearable and portable motion-capture technologies.

For decades microelectromechanical systems (MEMS) have been the basis for new innovations in, for example, medical technology. Now these systems are starting to move to the next level – nano-electromechanical systems, or NEMS.

Xuge Fan, a researcher in the Department for Micro and Nanosystems at KTH, says that the unique material properties of graphene have enabled them to build these ultra-small accelerometers.

“Based on the surveys and comparisons we have made, we can say that this is the smallest reported electromechanical accelerometer in the world,” Fan says. The researchers reported their work in Nature Electronics.

The measure by which any conductor is judged is how easily, and speedily, electrons can move through it. On this point, together with its extraordinary mechanical strength, graphene is one of the most promising materials for a breathtaking array of applications in nano-electromechanical systems.

“We can scale down components because of the material’s atomic-scale thickness, and it has great electrical and mechanical properties,” Fan says. “We created a piezoresistive NEMS accelerometer that is dramatically smaller than any MEMS accelerometers available today, but retains the sensitivity these systems require.”

The future for such small accelerometers is promising, says Fan, who compares advances in nanotechnology to the evolution of smaller and smaller computers.

“This could eventually benefit mobile phones for navigation, mobile games and pedometers, as well as monitoring systems for heart disease and motion-capture wearables that can monitor even the slightest movements of the human body,” he says.

Other potential uses for these NEMS transducers include ultra-miniaturized NEMS sensors and actuators such as resonators, gyroscopes and microphones. In addition, these NEMS transducers can be used as a system to characterize the mechanical and electromechanical properties of graphene, Fan says.

Max Lemme, professor at RWTH, is excited about the results: "Our collaboration with KTH over the years has already shown the potential of graphene membranes for pressure and Hall sensors and microphones. Now we have added accelerometers to the mix. This makes me hopeful to see the material on the market in some years. For this, we are working on industry-compatible manufacturing and integration techniques."

Tags:  AMO GmbH  Electronics  Graphene  KTH Royal Institute of Technology  Max Lemme  RWTH Aachen University  Sensors  Xuge Fan 

Share |
PermalinkComments (0)
 

Waterproof graphene electronic circuits

Posted By Graphene Council, The Graphene Council, Thursday, February 14, 2019
Updated: Thursday, February 14, 2019
Water molecules distort the electrical resistance of graphene, but a team of European researchers has discovered that when this two-dimensional material is integrated with the metal of a circuit, contact resistance is not impaired by humidity. This finding will help to develop new sensors –the interface between circuits and the real world– with a significant cost reduction.

The many applications of graphene, an atomically-thin sheet of carbon atoms with extraordinary conductivity and mechanical properties, include the manufacture of sensors. These transform environmental parameters into electrical signals that can be processed and measured with a computer.

Due to their two-dimensional structure, graphene-based sensors are extremely sensitive and promise good performance at low manufacturing cost in the next years.
To achieve this, graphene needs to make efficient electrical contacts when integrated with a conventional electronic circuit. Such proper contacts are crucial in any sensor and significantly affect its performance.

But a problem arises: graphene is sensitive to humidity, to the water molecules in the surrounding air that are adsorbed onto its surface. H2O molecules change the electrical resistance of this carbon material, which introduces a false signal into the sensor.

However, Swedish scientists have found that when graphene binds to the metal of electronic circuits, the contact resistance (the part of a material's total resistance due to imperfect contact at the interface) is not affected by moisture.

“This will make life easier for sensor designers, since they won't have to worry about humidity influencing the contacts, just the influence on the graphene itself,” explains Arne Quellmalz, a PhD student at KTH Royal Institute of Technology (Sweden) and the main researcher of the research.

The study, published in the journal ACS Applied Materials & Interfaces, has been carried out experimentally using graphene together with gold metallization and silica substrates in transmission line model test structures, as well as computer simulations.

“By combining graphene with conventional electronics, you can take advantage of both the unique properties of graphene and the low cost of conventional integrated circuits.” says Quellmalz, “One way of combining these two technologies is to place the graphene on top of finished electronics, rather than depositing the metal on top the graphene sheet.”

As part of the European CO2-DETECT project, the authors are applying this new approach to create the first prototypes of graphene-based sensors. More specifically, the purpose is to measure carbon dioxide (CO2), the main greenhouse gas, by means of optical detection of mid-infrared light and at lower costs than with other technologies.

Tags:  2D materials  Arne Quellmalz  Electronics  Graphene  KTH Royal Institute of Technology 

Share |
PermalinkComments (0)