Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Nanoelectromechanical sensors based on suspended 2D materials

Posted By Graphene Council, Wednesday, August 26, 2020
An international team of researchers have recently published a review article on nanoelectromechanical (NEMS) sensors based on suspended two-dimensional (2D) materials in the journal Research ("Nanoelectromechanical Sensors Based on Suspended 2D Materials"), an open-access multidisciplinary journal launched in 2018 as the first journal in the Science Partner Journal (SPJ) program.

The paper is an invited contribution to a special issue on “Progress and challenges in emerging 2D nanomaterials – preparation, processing, and device integration”, and has the purpose of contributing to the development of the field of 2D materials for sensor applications and to their integration with conventional semiconductor technology.

“I believe NEMS sensors based on 2D materials will be essential for satisfying the demand for integrated, high-performance sensors set by applications such as the Internet of Things (IoT) and autonomous mobility”, says Lemme, first author of the paper.

The review summarizes the many studies that have successfully shown the feasibility of using membranes of 2D materials in pressure sensors, microphones, mass and gas sensors – explaining the different sensor concepts and giving an overview of the relevant material properties, fabrication routes, and operation principles.

“Two-dimensional materials are ideally suited for sensors”, says Lemme, “as they allow realizing free-standing structures that are just one of a few atoms thick. This ultimate thinness can be a decisive advantage when it comes to nanoelectromechanical sensors, since the performance often depends critically on the thickness of the suspended part. Furthermore, many 2D materials have unique electrical, mechanical and optical properties that can be exploited for completely new concepts of sensor devices.”

The review – which includes contributions from RWTH Aachen University, AMO GmbH, Universität der Bundeswehr Munich, KTH Royal Institute of Technology, TU Delft, Infineon and the Kavli Institute of Nanoscience – discusses the different readout and integration methods of different sensors based on 2D materials, and provides comparisons against the state of the art devices to show both the challenges and the promises of 2D-materials based nanoelectromechanical sensing.

“Proof-of-concept sensor devices based on suspended 2D materials are almost always smaller than their conventional counterparts, show improved performances, and sometimes even completely novel functionalities”, says Peter G. Steeneken, leader of work-package 6 (Sensors) in the Graphene Flagship and co-author of the paper. “However, there are still enormous challenges to demonstrate that 2D material-based NEMS sensors can outperform conventional devices on all important aspects – for example, the establishment of high-yield manufacturing capabilities. The Graphene Flagship represents the ideal platform to address these challenges, as it fosters collaborations between world-leading groups to achieve a set of well-defined goals. This paper is an example of how, by bringing together complementary expertise, we can achieve more.”

Tags:  2D materials  AMO GmbH  Graphene  Graphene Flagship  Infineon  Kavli Institute of Nanoscience  KTH Royal Institute of Technology  Max Lemme  RWTH Aachen University  Sensors  TU Delft  Universität der Bundeswehr Munich 

Share |
PermalinkComments (0)