Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Haydale Awarded Funding to Develop Non-Metallic Gas Tanks for Spacecraft Propulsion Systems

Posted By Graphene Council, The Graphene Council, Wednesday, September 11, 2019
Updated: Thursday, September 5, 2019

Haydale has been awarded a technology de-risking project by the European Space Agency (ESA), to develop non-metallic gas tanks for spacecraft propulsion systems. This activity is alongside ISP International Space Propulsion Ltd through the ESA ARTES Competitiveness & Growth, in conjunction with UK Space Agency.

The recent market growth of small spacecraft constellations has created a challenge within the existing space propulsion supply chain for low-cost reliable components, which meet the rapid delivery schedule and support the on-going reduction of orbital debris. With the constellation market set to increase rapidly, the development of components that meet these criteria is critical. Haydale’s non-metallic system offers a low-cost alternative with reduced lead time that can be offered in a wider range of configurations to exactly suit the end user requirement.



This award follows on from the successful outcome of the GSTP project in 2018 performed with ESA and the UK Space Agency (UKSA) entitled “Assessments to Prepare and De-Risk Technology Developments - Tank using Advanced Composites.” This latest project will see Haydale develop findings from the GSTP project, performing comprehensive tests to determine the best material and process for developing non-metallic gas tanks.

Upon careful consideration and selection of both material and process, Haydale will formulate and model a largely de-risked tank, prior to the manufacture of development models for full testing. This will result in the qualification for specific Spacecraft Propulsion Systems. 

The role of this equipment is to store pressurised gas in a location onboard the spacecraft platform, in a manner that is intrinsically safe, and offers reliable provision of stored media, as and when required by the system. Within this equipment, the product will offer; leak-free storage and delivery on demand of all propellant and pressurised gases stored within, under specified environmental conditions and expected transient load cases; high pressure storage capabilities, with required levels of safety and reliability; highly reliable connections to the feed system and mechanical mounting; 

Prominent producers of Satellite technology have been identified and are engaged in developing the specification and tank design for eventual manufacture and deployment.

Keith Broadbent, CEO, Haydale, said: “This funding will allow Haydale to develop existing knowledge in the space industry and we look forward to developing the technology alongside our partners. We are pleased to have gained the support of the Airbus DS Tank Product Group who are interested in the development of competitive non-conventional pressure vessel products, and can provide clear design drivers thanks to their invaluable expertise. With the UK space market growing, Haydale is delighted to be part of this progression.”

Tags:  Aerospace  Airbus  Graphene  Haydale  Keith Broadbent 

Share |
PermalinkComments (0)
 

Haydale graphene-enhanced composite tooling and automotive body panels

Posted By Graphene Council, The Graphene Council, Wednesday, July 17, 2019

Haydale announces that its graphene-enhanced prepreg has now been incorporated in the composite tooling and automotive body panels of the new 'BAC Mono R', which made its debut at Goodwood Festival of Speed.


Briggs Automotive Company (BAC), working alongside both Haydale and Pentaxia, has built the lightweight BAC Mono R body using Haydale’s graphene-enhanced carbon composite materials.

The component parts have been formed using Haydale’s graphene-enhanced tooling materials. The outcome of the process for manufacturing the body parts is a full visual carbon material which can be lacquered or painted as required. Utilisation of graphene-enhanced tooling materials offers the potential for significant improvements in the following aspects:

  • The coefficient of thermal expansion (CTE) – is more closely matched when using composite tooling. A key issue with the use of metal tooling is a significant mismatch in (CTE)
  • The need for superior quality – higher dimensional stability tooling is increasing the demand for composite tooling
  • Current composite tools also suffer from a finite life - wearing of the tool surfaces and microcracking. The use of graphene has the potential to increase the life of the tools

Keith Broadbent, CEO at Haydale, commented: “In the development of this project, Haydale has improved the supply chain and cycle times as well as enabling BAC to reduce weight and increase performance of the material. Whilst this outcome has focused on the automotive sector, the knowledge and improvements made provide a wider opportunity for tooling materials across several markets, particularly where there are throughput constraints.”

Ian Briggs, Design Director at Briggs Automotive Company, added:

“BAC is forever an innovator, and being able to release a new car fully incorporating the use of graphene is just another example of how we’re pushing the boundaries. Niche vehicle manufacturers are of paramount importance in the automotive industry, acting as stepping stones for mass-market production technology – and after the overwhelming success of our R&D project with Haydale and Pentaxia, Mono R could well be a stepping stone for graphene-enhanced composite body panels and tooling reaching the wider automotive industry in the near future.”

Tags:  Briggs Automotive Company  Graphene  Haydale  Ian Briggs  Keith Broadbent 

Share |
PermalinkComments (0)
 

UK's National Grid Verifies Viability of Graphene Composite Application

Posted By Graphene Council, The Graphene Council, Tuesday, May 21, 2019
Updated: Monday, May 20, 2019
Haydale plc has been working with the UK's National Grid to calculate the benefit case of its Composite Transition Piece (CTP), using a method developed by National Grid and verified by PwC during a previous audit. This approach provides a risk rating for the benefits. In this case the risk was assessed by National Grid as ‘low’, meaning that National Grid can have a high level of confidence in the results it will achieve.

There are around 300 locations on the National Transmission System in the UK where gas pipes pass through reinforced concrete walls, for example into valve pits. Currently, several types of seal are used to prevent contamination by water or soil, but when these seals fail technicians face a major task to fix the problem.

National Grid has found that Haydale’s CTP represents a huge step forward in safety and efficiency, solving a major problem for the national gas transmission network at a reduced cost over the system’s life-time. The solution allows easy access to transition pipes at pit wall transitions for inspection and maintenance. Working in conjunction with National Grid, the innovative CTP seal units can be used to plug the gap between the pipe and the wall. It means that technicians can easily remove the unit and check the pipe for corrosion or damage. The CTP can then be replaced quickly in one simple operation.

Financially, the benefits of installing a CTP are significant especially when viewed over the entire design life of the unit. Taking less time to inspect the pit wall area with a CTP fitted means that just under £230k could be saved over a design life of 50 years per unit installed. This is comparing an inspection using the traditional methods with the composite solution.

In addition to the cost benefits, National Grid estimates that 700 fewer hours of ‘at risk’ activities will be needed for each CTP during its design life. Working on the pit wall requires technicians to work inside a pit which may be several meters deep. Benefits can be tracked after the first inspection and continue for the entire design life of 50 years per unit, this can subsequently be extended further following a simple replacement of the seal around the CTP.

There are also environmental benefits and National Grid have calculated that the new approach will save 12 tonnes of carbon equivalent (CO2e) for each CTP over its 50-year lifespan. This is determined by examining tasks such as excavating soil to expose the pit wall and generator power needed on site for the duration of the works

Two key compressor sites have already undergone large-scale works where National Grid have utilised the new CTPs. In total, eight new CTPs have been pre-fabricated and will be installed during the construction of the pit wall, further reducing installation costs. These units, along with one that was installed as part of the original trial, will start to provide benefits after their first inspections.

David Banks, Chairman at Haydale, commented: “With 9 CTPs planned for installation by the end of 2019, we look forward to seeing the benefits realised by National Grid. We look forward to continuing our work with the utilities industry, where the benefit of both composite materials and graphene are now being appreciated.”

Keith Broadbent, CEO at Haydale, commented: “Haydale is pleased to be working with National Grid on this system which is a huge step forward in safety and efficiency for the gas network. With £228,000 average savings per CTP design life and 700 fewer hours carrying out ‘at risk’ activities for each CTP over 50-year period, it is clear to see the benefit that the system offers to the customer.We look forward to working with gas infrastructure owners worldwide who can also benefit from
the product.”

Paul Ogden, Senior Civil Engineer at National Grid, commented: “Over a six-year period, National Grid expects to install about 60 CTPs on the National Transmission System. This will significantly improve safety as well as creating savings of up to £5 million in the next five to 10 years.”

Tags:  composites  David Banks  Graphene  Haydale  Keith Broadbent  National Grid  Paul Ogden 

Share |
PermalinkComments (0)
 

Contract awarded to develop graphene ink-based heaters for gas pre-heating

Posted By Graphene Council, The Graphene Council, Wednesday, March 6, 2019
Updated: Wednesday, March 6, 2019
Haydale, is pleased to announce it will be collaborating with Northern Gas Networks (NGN) and the Energy Innovation Centre, on a study to investigate the feasibility of developing a modern, innovative, fully compliant graphene-based preheat solution for use on gas operational sites.
 
The graphene solution has the potential to be more efficient and reliable than existing systems and has in-built flexibility to either retrofit onto existing pipes or to be built into new heat exchangers. Phase One of the 30-week project will see Haydale working directly with NGN, the gas distributer for the North East, Northern Cumbria and much of Yorkshire.
 
Modern gas pre-heating systems, whilst more efficient than traditional Water Bath Heaters (WBHs), have larger electrical power requirements and require backup generators to remain operational in the event of a power cut. Maintaining gas supplies is of vital importance to the Gas Distribution Networks and as such, backup power is used to ensure that sites can remain operational should the electrical supply be interrupted.  
 
WBHs are gas-powered and use low voltage solenoids in their control, so can remain operational from the very low voltage (VLV) supply which is backed up by batteries on site. WBHs however can be considered inefficient both environmentally and in terms of heat transfer.
 
Development of graphene-based, high conductivity inks and coatings that can be applied to surfaces have the potential to provide even heating across large areas with a very thin profile. This technology is made possible by Haydale’s patented HDPlas process which promotes efficient dispersion of nanomaterials into polymers and carriers. 
 
With this innovative technology, flexible construction methods have the potential for several different solutions such as external fitment to existing pipes, internal fitment to existing pipes or integration into new replacement composite pipe sections which may include heat-exchanging internal surfaces. 
 
Should this initial feasibility project prove successful, future development stages will progress to field-based trials.
 
Dr Matthew Thornton, Senior Manager for Haydale Composite Solutions, said: “We are excited to be working with NGN and EIC to develop our graphene-based heater technology for use on the gas distribution network. The opportunity to demonstrate the feasibility of graphene-based heaters as a viable alternative to incumbent pre-heat systems presents a fantastic opportunity for Haydale in this innovative sector.”

Keith Broadbent, COO for Haydale, said: “This solution for the gas networks shows another commercial route for the functionalised graphene inks that are being produced by Haydale. We look forward to working with both Northern Gas Networks and the Energy Innovation Centre to progress this route to market.”
 
Gareth Payne, Project Manager for Northern Gas Networks, said: “I’m really excited to be leading this project on behalf of NGN, working with Haydale Composite Solutions and supported by the EIC. If this project proves successful, then we could be looking at a real game changer in terms of preheating systems that can be utilised on gas distribution sites. We hope this project will lead to collaborative working with other networks to develop the idea further, as NGN continues to explore low-carbon technologies in order to deliver a cleaner, greener future for customers.”

David Turner-Bennett, Gas Innovation Engineer for the Energy Innovation Centre, said: “We are thrilled to be facilitating this project with NGN and Haydale. This project has the potential to revolutionise pre-heating systems in the gas industry and demonstrates NGN’s commitment to securing a low-carbon future. It’s a pleasure to work with and support a ground-breaking project that involves people like Gareth and Matthew who are passionate about change. We hope to see other networks follow NGN’s lead and collaborate to develop this idea further.”

Tags:  Graphene  Haydale  Keith Broadbent  Matthew Thornton  nanomaterials  Northern Gas Networks 

Share |
PermalinkComments (0)