Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Batteries  nanomaterials  University of Manchester  CVD  First Graphene  electronics  Li-ion batteries  coatings  graphene oxide  graphene production  The Graphene Flagship  Applied Graphene Materials  Carbon Nanotubes  composites  Energy Storage  Graphite  Haydale  Graphene Flagship  Healthcare  3D Printing  Battery  optoelectronics  polymers  Versarien  Adrian Potts  Andre Geim  biosensors 

MIT engineers build advanced microprocessor out of carbon nanotubes

Posted By Graphene Council, The Graphene Council, Tuesday, September 3, 2019

After years of tackling numerous design and manufacturing challenges, MIT researchers have built a modern microprocessor from carbon nanotube transistors, which are widely seen as a faster, greener alternative to their traditional silicon counterparts.

The microprocessor, described today in the journal Nature, can be built using traditional silicon-chip fabrication processes, representing a major step toward making carbon nanotube microprocessors more practical.

Silicon transistors — critical microprocessor components that switch between 1 and 0 bits to carry out computations — have carried the computer industry for decades. As predicted by Moore’s Law, industry has been able to shrink down and cram more transistors onto chips every couple of years to help carry out increasingly complex computations. But experts now foresee a time when silicon transistors will stop shrinking, and become increasingly inefficient.

Making carbon nanotube field-effect transistors (CNFET) has become a major goal for building next-generation computers. Research indicates CNFETs have properties that promise around 10 times the energy efficiency and far greater speeds compared to silicon. But when fabricated at scale, the transistors often come with many defects that affect performance, so they remain impractical.

The MIT researchers have invented new techniques to dramatically limit defects and enable full functional control in fabricating CNFETs, using processes in traditional silicon chip foundries. They demonstrated a 16-bit microprocessor with more than 14,000 CNFETs that performs the same tasks as commercial microprocessors. The Nature paper describes the microprocessor design and includes more than 70 pages detailing the manufacturing methodology.

The microprocessor is based on the RISC-V open-source chip architecture that has a set of instructions that a microprocessor can execute. The researchers’ microprocessor was able to execute the full set of instructions accurately. It also executed a modified version of the classic “Hello, World!” program, printing out, “Hello, World! I am RV16XNano, made from CNTs.”

“This is by far the most advanced chip made from any emerging nanotechnology that is promising for high-performance and energy-efficient computing,” says co-author Max M. Shulaker, the Emanuel E Landsman Career Development Assistant Professor of Electrical Engineering and Computer Science (EECS) and a member of the Microsystems Technology Laboratories. “There are limits to silicon. If we want to continue to have gains in computing, carbon nanotubes represent one of the most promising ways to overcome those limits. [The paper] completely re-invents how we build chips with carbon nanotubes.”

Joining Shulaker on the paper are: first author and postdoc Gage Hills, graduate students Christian Lau, Andrew Wright, Mindy D. Bishop, Tathagata Srimani, Pritpal Kanhaiya, Rebecca Ho, and Aya Amer, all of EECS; Arvind, the Johnson Professor of Computer Science and Engineering and a researcher in the Computer Science and Artificial Intelligence Laboratory; Anantha Chandrakasan, the dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science; and Samuel Fuller, Yosi Stein, and Denis Murphy, all of Analog Devices.

Fighting the “bane” of CNFETs

The microprocessor builds on a previous iteration designed by Shulaker and other researchers six years ago that had only 178 CNFETs and ran on a single bit of data. Since then, Shulaker and his MIT colleagues have tackled three specific challenges in producing the devices: material defects, manufacturing defects, and functional issues. Hills did the bulk of the microprocessor design, while Lau handled most of the manufacturing.

For years, the defects intrinsic to carbon nanotubes have been a “bane of the field,” Shulaker says. Ideally, CNFETs need semiconducting properties to switch their conductivity on an off, corresponding to the bits 1 and 0. But unavoidably, a small portion of carbon nanotubes will be metallic, and will slow or stop the transistor from switching. To be robust to those failures, advanced circuits will need carbon nanotubes at around 99.999999 percent purity, which is virtually impossible to produce today.  

The researchers came up with a technique called DREAM (an acronym for “designing resiliency against metallic CNTs”), which positions metallic CNFETs in a way that they won’t disrupt computing. In doing so, they relaxed that stringent purity requirement by around four orders of magnitude — or 10,000 times — meaning they only need carbon nanotubes at about 99.99 percent purity, which is currently possible.

Designing circuits basically requires a library of different logic gates attached to transistors that can be combined to, say, create adders and multipliers — like combining letters in the alphabet to create words. The researchers realized that the metallic carbon nanotubes impacted different pairings of these gates differently. A single metallic carbon nanotube in gate A, for instance, may break the connection between A and B. But several metallic carbon nanotubes in gates B may not impact any of its connections.

In chip design, there are many ways to implement code onto a circuit. The researchers ran simulations to find all the different gate combinations that would be robust and wouldn’t be robust to any metallic carbon nanotubes. They then customized a chip-design program to automatically learn the combinations least likely to be affected by metallic carbon nanotubes. When designing a new chip, the program will only utilize the robust combinations and ignore the vulnerable combinations.

“The ‘DREAM’ pun is very much intended, because it’s the dream solution,” Shulaker says. “This allows us to buy carbon nanotubes off the shelf, drop them onto a wafer, and just build our circuit like normal, without doing anything else special.”

Exfoliating and tuning

CNFET fabrication starts with depositing carbon nanotubes in a solution onto a wafer with predesigned transistor architectures. However, some carbon nanotubes inevitably stick randomly together to form big bundles — like strands of spaghetti formed into little balls — that form big particle contamination on the chip.  

To cleanse that contamination, the researchers created RINSE (for “removal of incubated nanotubes through selective exfoliation”). The wafer gets pretreated with an agent that promotes carbon nanotube adhesion. Then, the wafer is coated with a certain polymer and dipped in a special solvent. That washes away the polymer, which only carries away the big bundles, while the single carbon nanotubes remain stuck to the wafer. The technique leads to about a 250-times reduction in particle density on the chip compared to similar methods.

Lastly, the researchers tackled common functional issues with CNFETs. Binary computing requires two types of transistors: “N” types, which turn on with a 1 bit and off with a 0 bit, and “P” types, which do the opposite. Traditionally, making the two types out of carbon nanotubes has been challenging, often yielding transistors that vary in performance. For this solution, the researchers developed a technique called MIXED (for “metal interface engineering crossed with electrostatic doping”), which precisely tunes transistors for function and optimization.

In this technique, they attach certain metals to each transistor — platinum or titanium — which allows them to fix that transistor as P or N. Then, they coat the CNFETs in an oxide compound through atomic-layer deposition, which allows them to tune the transistors’ characteristics for specific applications. Servers, for instance, often require transistors that act very fast but use up energy and power. Wearables and medical implants, on the other hand, may use slower, low-power transistors.  

The main goal is to get the chips out into the real world. To that end, the researchers have now started implementing their manufacturing techniques into a silicon chip foundry through a program by Defense Advanced Research Projects Agency, which supported the research. Although no one can say when chips made entirely from carbon nanotubes will hit the shelves, Shulaker says it could be fewer than five years. “We think it’s no longer a question of if, but when,” he says.

Tags:  Analog Devices  Carbon Nanotubes  Graphene  Max M. Shulaker  MIT  transistor 

Share |
PermalinkComments (0)
 

Manipulating atoms one at a time with an electron beam

Posted By Graphene Council, The Graphene Council, Thursday, May 30, 2019
Updated: Friday, May 24, 2019

The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.

Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron beam and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of “atomic engineering,” they say.

The advance is described in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.

“We’re using a lot of the tools of nanotechnology,” explains Li, who holds a joint appointment in materials science and engineering. But in the new research, those tools are being used to control processes that are yet an order of magnitude smaller. “The goal is to control one to a few hundred atoms, to control their positions, control their charge state, and control their electronic and nuclear spin states,” he says.

While others have previously manipulated the positions of individual atoms, even creating a neat circle of atoms on a surface, that process involved picking up individual atoms on the needle-like tip of a scanning tunneling microscope and then dropping them in position, a relatively slow mechanical process. The new process manipulates atoms using a relativistic electron beam in a scanning transmission electron microscope (STEM), so it can be fully electronically controlled by magnetic lenses and requires no mechanical moving parts. That makes the process potentially much faster, and thus could lead to practical applications.

Using electronic controls and artificial intelligence, “we think we can eventually manipulate atoms at microsecond timescales,” Li says. “That’s many orders of magnitude faster than we can manipulate them now with mechanical probes. Also, it should be possible to have many electron beams working simultaneously on the same piece of material.”

“This is an exciting new paradigm for atom manipulation,” Susi says.

Computer chips are typically made by “doping” a silicon crystal with other atoms needed to confer specific electrical properties, thus creating “defects’ in the material — regions that do not preserve the perfectly orderly crystalline structure of the silicon. But that process is scattershot, Li explains, so there’s no way of controlling with atomic precision where those dopant atoms go. The new system allows for exact positioning, he says.

The same electron beam can be used for knocking an atom both out of one position and into another, and then “reading” the new position to verify that the atom ended up where it was meant to, Li says. While the positioning is essentially determined by probabilities and is not 100 percent accurate, the ability to determine the actual position makes it possible to select out only those that ended up in the right configuration.

Atomic soccer

The power of the very narrowly focused electron beam, about as wide as an atom, knocks an atom out of its position, and by selecting the exact angle of the beam, the researchers can determine where it is most likely to end up. “We want to use the beam to knock out atoms and essentially to play atomic soccer,” dribbling the atoms across the graphene field to their intended “goal” position, he says.

“Like soccer, it’s not deterministic, but you can control the probabilities,” he says. “Like soccer, you’re always trying to move toward the goal.”

In the team’s experiments, they primarily used phosphorus atoms, a commonly used dopant, in a sheet of graphene, a two-dimensional sheet of carbon atoms arranged in a honeycomb pattern. The phosphorus atoms end up substituting for carbon atoms in parts of that pattern, thus altering the material’s electronic, optical, and other properties in ways that can be predicted if the positions of those atoms are known.

Ultimately, the goal is to move multiple atoms in complex ways. “We hope to use the electron beam to basically move these dopants, so we could make a pyramid, or some defect complex, where we can state precisely where each atom sits,” Li says.

This is the first time electronically distinct dopant atoms have been manipulated in graphene. “Although we’ve worked with silicon impurities before, phosphorus is both potentially more interesting for its electrical and magnetic properties, but as we’ve now discovered, also behaves in surprisingly different ways. Each element may hold new surprises and possibilities,” Susi adds.

The system requires precise control of the beam angle and energy. “Sometimes we have unwanted outcomes if we’re not careful,” he says. For example, sometimes a carbon atom that was intended to stay in position “just leaves,” and sometimes the phosphorus atom gets locked into position in the lattice, and “then no matter how we change the beam angle, we cannot affect its position. We have to find another ball.”

Theoretical framework
In addition to detailed experimental testing and observation of the effects of different angles and positions of the beams and graphene, the team also devised a theoretical basis to predict the effects, called primary knock-on space formalism, that tracks the momentum of the “soccer ball.” “We did these experiments and also gave a theoretical framework on how to control this process,” Li says.

The cascade of effects that results from the initial beam takes place over multiple time scales, Li says, which made the observations and analysis tricky to carry out. The actual initial collision of the relativistic electron (moving at about 45 percent of the speed of light) with an atom takes place on a scale of zeptoseconds — trillionths of a billionth of a second — but the resulting movement and collisions of atoms in the lattice unfolds over time scales of picoseconds or longer — billions of times longer.

Dopant atoms such as phosphorus have a nonzero nuclear spin, which is a key property needed for quantum-based devices because that spin state is easily affected by elements of its environment such as magnetic fields. So the ability to place these atoms precisely, in terms of both position and bonding, could be a key step toward developing quantum information processing or sensing devices, Li says.

“This is an important advance in the field,” says Alex Zettl, a professor of physics at the University of California at Berkeley, who was not involved in this research. “Impurity atoms and defects in a crystal lattice are at the heart of the electronics industry. As solid-state devices get smaller, down to the nanometer size scale, it becomes increasingly important to know precisely where a single impurity atom or defect is located, and what are its atomic surroundings. An extremely challenging goal is having a scalable method to controllably manipulate or place individual atoms in desired locations, as well as predicting accurately what effect that placement will have on device performance.”

Zettl says that these researchers “have made a significant advance toward this goal. They use a moderate energy focused electron beam to coax a desirable rearrangement of atoms, and observe in real-time, at the atomic scale, what they are doing. An elegant theoretical treatise, with impressive predictive power, complements the experiments.”

Besides the leading MIT team, the international collaboration included researchers from the University of Vienna, the University of Chinese Academy of Sciences, Aarhus University in Denmark, National Polytechnical School in Ecuador, Oak Ridge National Laboratory, and Sichuan University in China. The work was supported by the National Science Foundation, the U.S. Army Research Office through MIT’s Institute for Soldier Nanotechnologies, the Austrian Science Fund, the European Research Council, the Danish Council for Independent Research, the Chinese Academy of Sciences, and the U.S. Department of Energy.

Tags:  2D materials  Alex Zettl  Electronics  Graphene  Ju Li  MIT  Toma Susi  University of California at Berkeley  University of Vienna 

Share |
PermalinkComments (0)
 

MIT's Michael Strano turns plants into chemical detectors

Posted By Terrance Barkan, Monday, October 31, 2016

Scientists have transformed the humble spinach plant into a bomb detector.

Source: MIT

By embedding tiny tubes in the plants' leaves, they can be made to pick up chemicals called nitro-aromatics, which are found in landmines and buried munitions. Real-time information can then be wirelessly relayed to a handheld device.

The MIT (Massachusetts Institute of Technology) work is published in the journal Nature Materials. The scientists implanted nanoparticles and carbon nanotubes (tiny cylinders of carbon) into the leaves of the spinach plant. It takes about 10 minutes for the spinach to take up the water into the leaves.

To read the signal, the researchers shine a laser onto the leaf, prompting the embedded nanotubes to emit near-infrared fluorescent light. This can be detected with a small infrared camera connected to a small, cheap Raspberry Pi computer. The signal can also be detected with a smartphone by removing the infrared filter most have.

Co-author Prof Michael Strano, from MIT in Cambridge, US, said the work was an important proof of principle. "Our paper outlines how one could engineer plants like this to detect virtually anything," he told the BBC News website.

Prof Strano's lab has previously developed carbon nanotubes that can be used as sensors to detect hydrogen peroxide, TNT, and the nerve gas sarin. When the target molecule binds to a polymer material wrapped around the nanotube, it changes the way it glows. "The plants could be use for defence applications, but also to monitor public spaces for terrorism related activities, since we show both water and airborne detection," said Prof Strano.

"Such plants could be used to monitor groundwater seepage from buried munitions or waste that contains nitro-aromatics." Using the set-up described in the paper, the researchers can pick up a signal from about 1m away from the plant, and they are now working on increasing that distance.

Source: BBC News

Tags:  Carbon Nanotubes  Michael Strano  MIT  Sensors 

Share |
PermalinkComments (0)