Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Tour scores prestigious Centenary Prize

Posted By Graphene Council, Friday, June 26, 2020
Rice University chemist James Tour has won a Royal Society of Chemistry Centenary Prize. The award, given annually to up to three scientists from outside Great Britain, recognizes researchers for their contributions to the chemical sciences industry or education and for successful collaborations. Tour was named for innovations in materials chemistry with applications in medicine and nanotechnology.

The prestigious award, established in 1947, comes with a 5,000-pound (about $6,260) cash prize and a medal. Winners are invited to undertake a lecture tour of the United Kingdom, but the COVID-19 pandemic has delayed that until 2021.

Additional winners this year are Teri Odom, the chair and Charles E. and Emma H. Morrison Professor of Chemistry at Northwestern University, and Eric Anslyn, the Welch Regents Chair and University Distinguished Teaching Professor at the University of Texas at Austin. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

“Receiving the Royal Society of Chemistry 2020 Centenary Prize is an enormous honor,” Tour said. “The award recognizes the accomplishments of my research group over a period of 32 years. I am greatly indebted to a host of students, postdocs and collaborators that have carried the weight of this research endeavor.

“We have sought to use chemistry to extend the boundaries of new materials development for use in medicine, electronic devices, nano-enhanced structures and renewable energy platforms,” he said. “It is a joy to realize the work done by this array of people in and with my laboratory has afforded such advances that are being recognized by this Centenary Prize.”

Work by Tour and his group in recent years includes the development of versatile laser-induced graphene, flash graphene from waste material, light-activated nanodrills that destroy cancer cells and “superbug” bacteria, silicon-oxide memory circuits that have flown on the International Space Station, the development of graphene quantum dots from coal, asphalt-based materials to capture carbon dioxide from gas wells, and the use of nanoparticles to quench damaging superoxides after an injury or stroke.

“We live in an era of tremendous global challenges, with the need for science recognized now more so than ever — so it is important to recognize those behind the scenes who are making significant contributions towards improving the world we live in,” said acting Royal Society of Chemistry chief executive Helen Pain. “In recognizing the work of Professor Tour, we are also recognizing the important contribution this incredible network of scientists makes to improve our lives every day.”

Tags:  Graphene  Healthcare  Helen Pain  James Tour  Medicine  nanotechnology  Rice University  Royal Society of Chemistry 

Share |
PermalinkComments (0)
 

Risk analyses for nanoparticles Nanosafety research without animal experiments

Posted By Graphene Council, Thursday, June 18, 2020
They are already in use in, say, cosmetics and the textile industry: Nanoparticles in sun blockers protect us from sunburn, and clothing with silver nanoparticles slows down bacterial growth. But the use of these tiny ingredients is also linked to the responsibility of being able to exclude negative effects for health and the environment. Nanoparticles belong to the still poorly characterized class of nanomaterials, which are between one and 100 nanometers in size and have a wide range of applications, for example in exhaust gas catalytic converters, wall paints, plastics and in nanomedicine. As new and unusual as nanomaterials are, it is still not clear whether or not they pose any risks to humans or the environment.

This is where risk analyses and life cycle assessments (LCA) come into play, which used to rely strongly on animal experiments when it came to determining the harmful effects of a new substance, including toxicity. Today, research is required to reduce and replace animal experiments wherever possible. Over the past 30 years, this approach has led to a substantial drop in animal testing, particularly in toxicological tests. The experience gained with conventional chemicals cannot simply be transferred to novel substances such as nanoparticles, however. Empa scientists are now developing new approaches, which should allow another substantial reduction in animal testing while at the same time enabling the safe use of nanomaterials.

"We are currently developing a new, integrative approach to analyze the risks of nanoparticles and to perform life cycle assessments," says Beatrice Salieri from Empa's Technology and Society lab in St. Gallen. One new feature, and one which differs from conventional analyses, is that, in addition to the mode of action of the substance under investigation, further data is included, such as the exposure and fate of a particle in the human body, so that a more holistic view is incorporated into the risk assessment.

These risk analyses are based on the nanoparticles' biochemical properties in order to develop suitable laboratory experiments, for example with cell cultures. To make sure the results from the test tube ("in vitro") also apply to the conditions in the human body ("in vivo"), the researchers use mathematical models ("in silico"), which, for instance, rely on the harmfulness of a reference substance. "If two substances, such as silver nanoparticles and silver ions, act in the very same way, the potential hazard of the nanoparticles can be calculated from that," says Salieri. 

But for laboratory studies on nanoparticles to be conclusive, a suitable model system must first be developed for each type of nanoparticle. "Substances that are inhaled are examined in experiments with human lung cells," explains Empa researcher Peter Wick who is heading the "Particles-Biology Interactions" lab in St. Gallen. On the other hand, intestinal or liver cells are used to simulate digestion in the body.

This not only determines the damaging dose of a nanoparticle in cell culture experiments, but also includes all biochemical properties in the risk analysis, such as shape, size, transport patterns and the binding – if any – to other molecules. For example, free silver nanoparticles in a cell culture medium are about 100 times more toxic than silver nanoparticles bound to proteins. Such comprehensive laboratory analyses are incorporated into so-called kinetic models, which, instead of a snapshot of a situation in the test tube, can depict the complete process of particle action.

Finally, with the aid of complex algorithms, the expected biological phenomena can be calculated from these data. "Instead of 'mixing in' an animal experiment every now and then, we can determine the potential risks of nanoparticles on the basis of parallelisms with well-known substances, new data from lab analyses and mathematical models," says Empa researcher Mathias Rösslein. In future, this might also enable us to realistically represent the interactions between different nanoparticles in the human body as well as the characteristics of certain patient groups, such as elderly people or patients with several diseases, the scientist adds.

As a result of these novel risk analyses for nanoparticles, the researchers also hope to accelerate the development and market approval of new nanomaterials. They are already being applied in the "Safegraph" project, one of the projects in the EU's "Graphene Flagship" initiative, in which Empa is involved as a partner. Risk analyses and LCA for the new "wonder material" graphene are still scarce. Empa researchers have recently been able to demonstrate initial safety analyses of graphene and graphene related materials in fundamental in vitro studies. In this way, projects such as Safegraph can now better identify potential health risks and environmental consequences of graphene, while at the same time reducing the number of animal experiments.

Tags:  Beatrice Salieri  Empa  Graphene  Medicine  nanomaterials  nanoparticles 

Share |
PermalinkComments (0)