Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Nanotech SME and University of Sussex team up with Walmart to reduce retail waste

Posted By Graphene Council, Wednesday, February 12, 2020
Nanomaterial specialists Advanced Material Development (AMD) and researchers from the University of Sussex Business School have teamed up with Walmart to examine and develop the impact of bringing an innovative solution into retail supply chains, significantly reducing metal waste.

The project will be funded via a grant from UK Research and Innovation (UKRI), the Economic and Social Research Council (ESRC) and the National Productivity Investment Fund. It follows the recent £8 million ESRC investment into the Digital Futures at Work Research Centre.

The funded project will examine the employment consequences of the development, adoption and implementation of new environmentally friendly digital technologies; in this case Radio-frequency identification (RFID) tags in the retail sector. Material scientist Professor Alan Dalton and his team have created an alternative to the traditional metal tags on clothing and food by developing antennas based on graphene inks.

John Lee, CEO of AMD, said: “Our work at Sussex in the field of highly conductive inks has partly been driven by demands from the retail industry searching for a sustainable solution in the replacement of metal content in RFID antennas. We are continuing to improve our technology for our partners in this space, with a possible large-scale print trial this year. The opportunity to work with a company with the global impact and sustainability reputation of Walmart is a substantial boost for us, and testament to the potential value of this innovation.”

AMD has recently announced a £1.5m equity funding round as the company further extends its nano-material research and development operations. It will also support its government and industry partnerships in Europe and the US. The business has now incorporated in the United States and formed an office presence in the Washington metropolitan area.

“This is a key development in the AMD business plan,” said John Lee. “The U.S. effort has been the key thrust for our business in the last year and our success to date is notable. Our partners have urged us to establish a local presence and we now see this to be just the start of a huge growth opportunity for the company.”

Professor Alan Dalton from the School of Mathematical and Physical Sciences at the University of Sussex said: “The nanotech ink we create in our lab has loads of important, sustainable applications. We’re excited that our world-leading research has paved the way for Walmart and other retailers to bin metal-dependent tags and replace them with our much more eco-friendly answer. There’s no need now for the old-fashioned supermarket tags of the past to populate landfill sites.”

As part of the project, social sciences and management studies academics will examine the learning process from product development to implementation and its impact on labour requirements and productivity. The global RFID market was estimated to be worth US$11bn in 2018, and is predicted to increase to US$13.4bn by 2022.

Professor Jackie O’Reilly, Co-Director for the new Digital Futures at Work Research Centre (digit-research.org), said: “This is a fantastically exciting project. It is a unique opportunity to work with brilliant physics researchers to understand their world and what they create; to understand how these hard science ideas are exported into the business world; and to understand how these decisions affect the way work is constructed and what kinds of jobs people get as a result of major companies adopting these new technologies."

Tags:  Advanced Material Development  Alan Dalton  Graphene  Jackie O’Reilly  John Lee  nanomaterials  RFID  University of Sussex 

Share |
PermalinkComments (0)
 

Blue sky inking: How nanomaterials could lower retail waste and speed up the stock take

Posted By Graphene Council, Thursday, February 6, 2020
As part of the new £8 million ESRC investment in Digital Futures at Work Research Centre, University of Sussex academics and an innovative SME have teamed up with the world's largest retail company to understand how quantum digital technology could revolutionise employment in the retail sector and significantly reduce metal waste.

University academics and Advanced Material Development (AMD) are working with Quantum Physics researchers, sociologists at the University of Sussex Business School digit centre and Walmart to understand how more environmentally-friendly radio-frequency identification (RFID) tags are developed, implemented and affect employment in the retail sector.

Materials scientist Professor Alan Dalton and his team have created an alternative to metal tags on clothing and food by developing antennas based on graphene inks which can be printed onto paper creating a sustainable solution to an essential part of the retail supply chain.

As part of the project, social sciences and management studies academics from the Digit Centre at the University of Sussex Business School will examine the learning process from product development to implementation and its impact on labour requirements and productivity.

Professor Alan Dalton from the School of Mathematical and Physical Sciences at the University of Sussex said: "The nanotech ink we create in our lab has loads of important, sustainable applications.

"We're excited that our world-leading research has paved the way for Walmart and other retailers to bin metal-dependent tags and replace them with our much more eco-friendly answer.

"There's no need now for the old fashioned supermarket tags of the past to populate landfill sites." The global RFID market was estimated to be worth US$11bn in 2018, and is predicted to increase to US$13.4bn by 2022.

Graphene-based nanomaterial inks, where the individual components are invisible to the human eye, have been developed as coatings which could replace metals in RFID systems and which can be applied to a range of surfaces using commercial printing techniques such as ink-jet, screen and flexographic.

The capability of the inks are also being expanded through the application of a quantum microscope - developed and constructed by the Sussex Programme for Quantum Research.

John Lee, CEO of AMD, said: "Our work at Sussex in the field of highly conductive inks has partly been driven by demands from the retail industry searching for a sustainable solution in the replacement of metal content in RFID antennas.

"We are continuing to improve our technology for our partners in this space, with a possible large scale print trial this year, and the opportunity to work with a company with the global impact and sustainability reputation of Walmart is a substantial boost and support of the need for us."

AMD has recently announced a £1.5m equity funding round as the company further extends its nanomaterial research and development operations. It will also support its government and industry partnerships in Europe and the US.

Professor Jackie O'Reilly, Co-Director for the new Digital Futures at Work Research Centre at the University of Sussex Business School, said: "The potential for this technology is huge.

"Implementation of RFID systems can transform supply chain efficiencies for large companies with complex supplier bases and can significantly reduce inventory count time from hundreds to a handful of hours.

"While this is hugely beneficial for companies, there is clearly the potential for huge consequences on employment rates, worker satisfaction and wellbeing that need to be adequately investigated.

"This is a unique opportunity to work with brilliant physics researchers to understand their world and what they create; to understand how these hard core science ideas are exported into the business world; and to understand how these?decisions?affect the way work is constructed and what kinds of jobs people get as a result of major companies adopting these new technologies."

Tags:  Advanced Material Development  Alan Dalton  biomaterials  Graphene  John Lee  nanomaterials  RFID  University of Sussex 

Share |
PermalinkComments (0)