Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

The University of Manchester Joins The Graphene Council

Posted By Terrance Barkan, Wednesday, August 28, 2019
Updated: Tuesday, August 27, 2019

The University of Manchester’s Graphene Engineering Innovation Centre (GEIC) becomes the newest member of The Graphene Council

The University of Manchester is home to two world-class, multi-million pound centres for the research and development of graphenerelated materials and applications. In particular, the Graphene Engineering Innovation Centre (GEIC) specialises in the rapid development and scale up of graphene and other 2D materials applications, with a focus on: 

• Composites
• Energy
• Membranes
• Inks, Formulations and Coatings
• Graphene production
• Measurements and characterisation

The mission of the GEIC is to help accelerate the transfer of university based research and knowledge into real world commercial applications and is a key player in the UK’s overall initiative to create the world’s most advanced graphene ecosystem. 

James Baker, CEO at Graphene@Manchester stated: “We have decided to become a member of The Graphene Council because of a shared mission to help advance the commercial adoption of graphene as an industrial material, and because The Graphene Council compliments the efforts of the GEIC to help inform important industry sectors like composites, plastics, energy storage, sensors, coatings and many others. We look forward to working together with The Graphene Council as graphene reaches a critical tipping point over the next 12-18 months.”

The Graphene Council is the largest, independent community in the world for graphene researchers, application developers and commercial professionals reaching more than 25,000 individuals and companies globally. 

Terrance Barkan CAE, Executive Director of The Graphene Council said: “We are very honoured to be affiliated with the GEIC and The University of Manchester as the home of graphene’s discovery and where such important work on this material continues apace.

The development of graphene into a world-class commercial material will require the coordinated efforts of the entire supply chain so that the amazing properties of this material can be leveraged for a new generation of products and application that are more effective, longer lasting and much more sustainable for our planet.” 

If your organization would like to learn more about how to leverage the capabilities of graphene materials, please contact graphene.manchester.ac.uk or Terrance Barkan at tbarkan@thegraphenecouncil.org.

***

Listen to the recent Graphene Talk Podcast interview between The Graphene Council and James Baker, CEO of Graphene@Manchester about the state of graphene commercialization and application development. 

 

Tags:  Commercialization  GEIC  James Baker  University of Manchester 

Share |
PermalinkComments (0)
 

3D printable 2D materials based inks show promise to improve energy storage devices

Posted By Graphene Council, The Graphene Council, Sunday, August 11, 2019
Updated: Sunday, August 4, 2019
For the first time, a team of researchers, from the School of Materials and the National Graphene Institute at The the University of Manchester have formulated inks using the 2D material MXene, to produce 3D printed interdigitated electrodes.

As published in Advanced Materials, these inks have been used to 3D print electrodes that can be used in energy storages devices such as supercapacitors.

MXene, a ‘clay-like’ two-dimensional material composed of early transition metals (such as titanium) and carbon atoms, was first developed by Drexel University. However, unlike most clays, MXene shows high electrical conductivity upon drying and is hydrophilic, allowing them to be easily dispersed in aqueous suspensions and inks.

Graphene was the world’s first two-dimensional material, more conductive than copper, many more times stronger than steel, flexible, transparent and one million times thinner than the diameter of a human hair.

Since its isolation, graphene has opened the doors for the exploration of other two-dimensional materials, each with a range of different properties. However, in order to make use of these unique properties, 2D materials need to be efficiently integrated into devices and structures. The manufacturing approach and materials formulations are essential to realise this.

Dr Suelen Barg who led the team said: “We demonstrate that large MXene flakes spanning a few atoms thick, and water can be independently used to formulate inks with very specific viscoelastic behaviour for printing. These inks can be directly 3D printed into freestanding architectures over 20 layers tall. Due to the excellent electrical conductivity of MXene, we can employ our inks to directly 3D print current collector-free supercapacitors. The unique rheological properties combined with the sustainability of the approach open many opportunities to explore, especially in energy storage and applications requiring the functional properties of 2D MXene in customized 3D architectures.”

Wenji and Jae, PhD students at the Nano3D Lab at the University, said: “Additive manufacturing offers one possible method of building customised, multi-materials energy devices, demonstrating the capability to capture MXene’s potential for usage in energy applications. We hope this research will open avenues to fully unlock the potential of MXene for use in this field.”

The unique rheological properties combined with the sustainability of the approach open many opportunities to explore, especially in energy storage and applications requiring the functional properties of 2D MXene in customized 3D architectures. Dr Suelen Barg, School of Materials

The performance and application of these devices increasingly rely on the development and scalable manufacturing of innovative materials in order to enhance their performance.

Supercapacitors are devices that are able to produce massive amounts of power while using much less energy than conventional devices. There has been much work carried out on the use of 2D materials in these types of devices due to their excellent conductivity as well as having the potential to reduce the weight of the device.

Potential uses for these devices are for the automotive industry, such as in electric cars as well as for mobile phones and other electronics.

Tags:  2D materials  3D Printing  Drexel University  Graphene  Suelen Barg  Supercapacito  University of Manchester 

Share |
PermalinkComments (0)
 

New quantum phenomena helps to understand fundamental limits of graphene electronics

Posted By Graphene Council, The Graphene Council, Wednesday, July 31, 2019
Updated: Tuesday, July 30, 2019
A team of researchers from the Universities of Manchester, Nottingham and Loughborough have discovered quantum phenomena that helps to understand the fundamental limits of graphene electronics. As published in Nature Communications, the work describes how electrons in a single atomically-thin sheet of graphene scatter off the vibrating carbon atoms which make up the hexagonal crystal lattice.

By applying a magnetic field perpendicular to the plane of graphene, the current-carrying electrons are forced to move in closed circular “cyclotron” orbits. In pure graphene, the only way in which an electron can escape from this orbit is by bouncing off a “phonon” in a scattering event. These phonons are particle-like bundles of energy and momentum and are the “quanta” of the sound waves associated with the vibrating carbon atom. The phonons are generated in increasing numbers when the graphene crystal is warmed up from very low temperatures.

By passing a small electrical current through the graphene sheet, the team were able to measure precisely the amount of energy and momentum that is transferred between an electron and a phonon during a scattering event.

Their experiment revealed that two types of phonon scatter the electrons: transverse acoustic (TA) phonons in which the carbon atoms vibrate perpendicular to the direction of phonon propagation and wave motion (somewhat analogous to surface waves on water) and longitudinal acoustic (LA) phonons in which the carbon atoms vibrate back and forth along the direction of the phonon and the wave motion; (this motion is somewhat analogous to the motion of sound waves through air).

The measurements provide a very accurate measure of the speed of both types of phonons, a measurement which is otherwise difficult to make for the case of a single atomic layer. An important outcome of the experiments is the discovery that TA phonon scattering dominates over LA phonon scattering.

We were pleasantly surprised to find such prominent magnetophonon oscillations appearing in graphene. We were also puzzled why people had not seen them before, considering the extensive amount of literature on quantum transport in graphene. Laurence Eaves and Roshan Krishna Kumar, The University of Manchester

The observed phenomena, commonly referred to as “magnetophonon oscillations”, was measured in many semiconductors years before the discovery of graphene. It is one of the oldest quantum transport phenomena that has been known for more than fifty years, predating the quantum Hall effect. Whereas graphene possesses a number of novel, exotic electronic properties, this rather fundamental phenomenon has remained hidden.

Laurence Eaves & Roshan Krishna Kumar, co-authors of the work said: “We were pleasantly surprised to find such prominent magnetophonon oscillations appearing in graphene. We were also puzzled why people had not seen them before, considering the extensive amount of literature on quantum transport in graphene.”

Their appearance requires two key ingredients. First, the team had to fabricate high quality graphene transistors with large areas at the National Graphene Institute. If the device dimensions are smaller than a few micrometres the phenomena could not be observed.

Piranavan Kumaravadivel from The University of Manchester, lead author of the paper said: “At the beginning of quantum transport experiments, people used to study macroscopic, millimetre sized crystals. In most of the work on quantum transport on graphene, the studied devices are typically only a few micrometres in size. It seems that making larger graphene devices is not only important for applications but now also for fundamental studies.”

The second ingredient is temperature. Most graphene quantum transport experiments are performed at ultra-cold temperatures in-order to slow down the vibrating carbon atoms and “freeze-out” the phonons that usually break quantum coherence. Therefore, the graphene is warmed up as the phonons need to be active to cause the effect.

Mark Greenaway, from Loughborough University, who worked on the quantum theory of this effect said: “This result is extremely exciting - it opens a new route to probe the properties of phonons in two-dimensional crystals and their heterostructures. This will allow us to better understand electron-phonon interactions in these promising materials, understanding which is vital to develop them for use in new devices and applications.”

Tags:  2D materials  Graphene  Laurence Eaves  Loughborough University  Mark Greenaway  Piranavan Kumaravadivel  Roshan Krishna Kumar  University of Manchester  University of Nottingham 

Share |
PermalinkComments (0)
 

Graphene and the Nuclear Decommissioning Authority in the UK

Posted By Graphene Council, The Graphene Council, Friday, April 5, 2019
Updated: Friday, April 5, 2019

Emerging technologies such as graphene are being investigated by the Nuclear Decommissioning Authority (NDA) in the UK for their potential to improve decommissioning of nuclear sites.

The Challenge

To identify how graphene, an emerging technology, could improve delivery of NDA’s mission.

The Solution

Review the properties of graphene including the latest developments and areas for potential deployment.

Technology Review : Graphene – a form of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice with unique chemical and physical properties.

Expected Benefits: Raising awareness of new emerging technology across the NDA Group and supply chain.

The NDA published a report on its findings and research over the period of 2016 - 2018: "Graphene and its use in nuclear decommissioning", produced in collaboration with NSG Environmental, the University of Manchester and the National Physical Laboratory

Highlights:

Graphene’s chemical and physical properties are unique:

- one of the thinnest but also strongest materials

- conducts heat better than all other materials

- conducts electricity

- is optically transparent but so dense that it is impermeable to gases

Developments in graphene-based technology have been rapid in a number of areas, including advanced electronics, water filtration and high-strength materials. NDA identified graphene as an emerging technology that could be useful to improve delivery of its mission.

NDA carried out a technology review to compare the properties and potential uses of graphene against the challenges facing the UK in decommissioning its earliest nuclear sites. The opportunities identified included:

  • Advanced materials: Graphene-doped materials could help to immobilise nuclear wastes.
  • Composites incorporating graphene could be used in the construction of stronger buildings or containers for storing nuclear materials.
  • Cleaning up liquid wastes: Graphene-based materials could absorb or filter radioactive elements, helping to clean up spills or existing radioactive wastes.
  • Sensors: Graphene in sensors could improve the detection of radiation or monitor for the signs of corrosion in containers.
  • Batteries: Graphene could produce smaller, longer-lasting batteries that would enable robots to operate for longer in contaminated facilities.

NDA also assessed the potential limitations in graphene’s use to provide a balanced assessment.

The issues identified included:
- cost
- scale-up
- environmental concerns
- lack of standardization
- knowledge regarding radiation tolerance

The report was shared with technical experts across the NDA group, published online and summarised in the Nuclear Institute’s journal: Nuclear Futures. As the technology moves on from early-stage research, NDA and its businesses are continuing to monitor developments, such as the recently opened Graphene Engineering and Innovation Centre (GEIC), with the aim of supporting graphene-based technologies and accelerating their uptake within the nuclear decommissioning sector.

NDA is progressing further projects investigating the potential of other emerging technologies. Engagement continues with academia and industry to identify innovations that could improve delivery of the mission.

Tags:  Andre Geim  Batteries  Graphene  Graphite  Konstantin Novoselov  Sensors  University of Manchester 

Share |
PermalinkComments (0)
 

Exploring the Graphene Flagship through the eyes of a Nobel Prize winner

Posted By Graphene Council, The Graphene Council, Tuesday, April 2, 2019
Updated: Tuesday, March 19, 2019

Talking with SciTech Europa, Professor Novoselov, who was co-awarded the 2010 Nobel Prize in Physics, for the discovery and isolation of a single atomic layer of carbon for the first time, explores the research into Graphene Flagship and other 2D materials.

At the University of Manchester, UK, in 2004, Professor Sir Kostya Novoselov, along with his colleague Professor Sir Andre Geim, discovered and isolated a single atomic layer of carbon for the first time. The pair received the Nobel Prize in Physics in 2010 in recognition of their breakthrough.

On 28 January 2013, the European Commission announced that, out of the six pilot preparatory actions put forwards for the Future and Emerging Technology (FET) Flagships competition, the Graphene Flagship, along with the Human Brain Project, had been selected to receive €1bn in funding over the course of a decade, tasking it with bringing together academic and industrial researchers to take graphene from the realm of academic laboratories into European society, thereby generating economic growth, new jobs, and new opportunities.

In February, SciTech Europa attended the Mobile World Congress in Barcelona, Spain. This event is the world’s largest exhibition for the mobile industry, and where, for the fourth consecutive year, the Graphene Flagship hosted its Graphene Pavilion – this year showcasing over 20 different graphene-based working prototypes and devices that will transform future telecommunications.

At the pavilion, SEQ met with Professor Novoselov to discuss research into graphene and other two dimensional materials, as well as how the Flagship is working to bolster both fundamental research and applications stemming from these advanced materials.

Q. What do you think have been the biggest, and latest, developments in graphene (and other 2D materials) research?

There has been a lot of progress in recent years and, indeed, we are no longer talking only about graphene, but also about many other two dimensional materials as well.

First of all – new applications of graphene is one example of recent developments – we see new applications emerging on an almost monthly basis. Second, there is still a lot of progress being made in fundamental research on graphene and 2D materials. And those fundamental results are being implemented in applications.

In terms of other new 2D materials, there is a lot of activity on ferromagnetic materials.

Q. What potential is there now to move graphene forwards, and how would you describe the role of the Flagship in this?

The basic technology is in place, and so what is important now is for entrepreneurs and SMEs to convert those developments into commercial applications, and, indeed, we need to help them to do so.

The Flagship, of course, has now reached the half way stage, and we therefore need to carefully balance the amount of effort we place on applications with the effort we place on the development of fundamental science, which remains crucial.

Nevertheless, we also need to ensure we are helping companies and industry to introduce this material into real products, and that is actually much more difficult, not least because of the fact that this has not been done at this scale before, and so nobody knows how to do it yet.

Q. Are you able to utilise EU instruments to help fund commercialisation activities?

It is not necessarily funding that is a problem in in Europe; the challenge comes more in the form of bringing together scientists, entrepreneurs, and funders in the same room, and it is still not clear how to achieve that. There is thus the argument that we need to work more closely with entrepreneurs and we need to grow those entrepreneurs who are working on advanced materials because this is a much more challenging area than, say, ‘.com’ applications.

Q. What do you feel are the biggest barriers here?

It is perhaps the mentality that exists around risk taking that needs to change. Bringing together entrepreneurs, scientists, the technology and the money around the same table is a challenge and, as I have mentioned, it needs to be understood that bringing new materials, especially nanomaterials, to market is much more challenging than it is to bring, for example, new software to consumers. And, of course, the level of required investment is also much larger. Whether we have enough people in Europe who are ready to take this risk is a good question.

Q. Would you say that Europe is too risk averse when it comes to this type of investment in comparison to, for instance, the USA?

Perhaps; there is certainly a sense that Europe needs to work much harder than the USA or South-East Asia. And the reason for that is not only a lack of those willing to take enhanced risks, but also the level and mobility of the available money and, indeed, how soon financiers expect a return on their investment.

Q. Could 2D materials research spark a ‘revolution’ in real world applications?

I am not sure that we will see a ‘revolution’; the growth in real world applications utilising graphene is, and will continue to be, a gradual introduction. That is not to say, however, that this gradual process won’t speed up a little over time. And it is great to see that, when it comes to graphene, this introduction, although gradual, is already happening much faster than with any other advanced material that we have seen before. The purpose of the Flagship is to help speed up this process.

The Flagship is now investing in research into the safety of graphene. How important is that?
This is an example of the sort of issue where the Flagship should take the initiative, because it is not only about graphene; we need to realise that many new nanomaterials are going to play an increasing role in the everyday lives of people, and we need to be prepared for that.

There are a great many regulations which have to be passed when bringing such advanced materials to market, including health and safety and toxicology regulations, and very often these are not very well defined because, quite simply, we have never been in this situation before. It can also be quite expensive to run the necessary projects to investigate things like toxicology, and so it is important for projects like the Flagship to take the initiative and help businesses to overcome these barriers.

Q. Where are your own research interests going to lie, moving forwards?

I do indeed conduct my own research, and within that graphene is not the largest part. I go beyond graphene and work on many other 2D materials and heterostructures, but it is nevertheless exciting to remember that it was graphene that made all the other materials possible as we work on those heterostructures towards new discoveries.

Tags:  2D materials  Graphene  Graphene Flagship  Kostya Novoselov  University of Manchester 

Share |
PermalinkComments (0)
 

Versarien achieves "Verified Graphene Producer" status.

Posted By Terrance Barkan, Monday, April 1, 2019
Updated: Sunday, March 31, 2019

The Graphene Council is pleased to announce that Versarien plc is the first graphene company in the world to successfully complete the Verified Graphene Producer program, an independent, third party verification system that involves a physical inspection of the production facilities, a review of the entire production process, a random sample of product material and rigorous characterization and testing by a first class, international materials laboratory. 

The Verified Graphene Producer program is an important step to bring transparency and clarity to a rapidly changing and opaque market for graphene materials, providing graphene customers with a level of confidence that has not existed before. 

“We are pleased to have worked with the National Physical Laboratory (NPL) in the UK, regarded as one of the absolute top facilities for metrology and graphene characterization in the world.
 
They have provided outstanding analytical expertise for the materials testing portion of the program including Raman Spectroscopy, XPS, AFM and SEM testing services.” stated Terrance Barkan CAE, Executive Director of The Graphene Council.
 
Andrew Pollard, Science Area Leader of the Surface Technology Group, National Physical Laboratory, said: “In order to develop real-world products that can benefit from the ‘wonder material’, graphene, we first need to fully understand its properties, reliably and reproducibly.
 
 “Whilst international measurement standards are currently being developed, it is critical that material characterisation is performed to the highest possible level.
 
As the UK’s National Measurement Institute (NMI) with a focus on developing the metrology of graphene and related 2D materials, we aim to be an independent third party in the testing of graphene material for companies and associations around the world, such as The Graphene Council.” 
 
Neill Ricketts, CEO of Versarien said: “We are delighted that Versarien is the first graphene producer in the world to successfully complete the Graphene Council’s Verified Graphene Producer programme.”
 
“This is a huge validation of our technology and will enable our partners and potential customers to have confidence that the graphene we produce meets globally accepted standards.”

 

“There are many companies that claim to be graphene producers, but to enjoy the benefits that this material can deliver requires high quality, consistent product to be supplied.  The Verified Producer programme is designed to verify that our production facilities, processes and tested material meet the stringent requirements laid down by The Graphene Council.”

 “I am proud that Versarien has been independently acclaimed as a Verified Graphene Producer and look forward to making further progress with our collaboration partners and numerous other parties that we are in discussions with.”

James Baker CEng FIET, the CEO of Graphene@Manchester (which includes coordinating the efforts of the National Graphene Institute and the Graphene Engineering and Innovation Centre [GEIC]) stated: “We applaud The Graphene Council for promoting independent third party verification for graphene producers that is supported by world class metrology and characterization services."

"This is an important contribution to the commercialization of graphene as an industrial material and are proud to have The Graphene Council as an Affiliate Member of the Graphene Engineering and Innovation Centre (GEIC) here in Manchester ”. 

Successful commercialization of graphene materials requires not only the ability to produce graphene to a declared specification but to be able to do so at a commercial scale.

It is nearly impossible for a graphene customer to verify the type of material they are receiving without going through an expensive and time consuming process of having sample materials fully characterized by a laboratory that has the equipment and expertise to test graphene. 

The Verified Graphene Producer program developed by The Graphene Council provides a level of independent inspection and verification that is not available anywhere else. 

If you would like more information about the Verified Graphene Producer program or about other services and benefits provided by The Graphene Council, please contact;

Terrance Barkan CAE

Executive Director, The Graphene Council 

tbarkan@thegraphenecouncil.org  or directly at  +1 202 294 5563

Tags:  Andrew Pollard  Andy Pollard  Graphene  Graphene Standards  James Baker  Manchester  National Physical Laboratory  Neill Ricketts  NPL  Standards  Terrance Barkan  The Graphene Council  University of Manchester  UoM  Verified Graphene Producer  Versarien 

Share |
PermalinkComments (0)
 

Graphene@Manchester at The University of Manchester

Posted By Graphene Council, The Graphene Council, Monday, March 25, 2019
Updated: Thursday, March 21, 2019

Graphene@Manchester at The University of Manchester is an on-going programme of activity to ensure that Manchester and the UK play a leading international role in developing the revolutionary potential of graphene.

Graphene@Manchester is creating a critical mass of graphene and 2D materials expertise made up of scientists, manufacturers, engineers, innovators, investors and industrialists to build a thriving knowledge-based economy.   

At the heart the vision is the National Graphene Institute and the Graphene Engineering Innovation Centre (GEIC), multi-million pound facilities with a commitment fostering strong industry-academic collaborations.   

The Graphene Council is a proud founding Affiliate Member of the GEIC, providing access to a word class facility and the graphene experts at the University of Manchester. 

Graphene@Manchester is home to an unrivalled breadth of expertise across 30 academic groups. This expertise gives us the ability to take graphene applications from basic research to finished product.   

Graphene is a disruptive technology; one that could open up new markets and even replace existing technologies or materials. From transport, medicine, electronics, energy, and water filtration, the range of industries where graphene research is making an impact is substantial.   

Graphene has the potential to create the next-generation of electronics currently limited to science fiction. Our facilities provide dedicated equipment to develop and produce inks and formulations for printed and flexible electronics, wearables and coatings.

Tags:  2D materials  coatings  Graphene  University of Manchester 

Share |
PermalinkComments (0)
 

2018 Eli and Brit Harari Graphene Enterprise Award Winners

Posted By Terrance Barkan, Tuesday, August 28, 2018

The two teams based at The University of Manchester are seeking breakthroughs by using graphene in the treatment of brain cancer and to radically improve battery performance.

The Eli and Britt Harari Graphene Enterprise Award, in association with Nobel Laureate Sir Andre Geim, is awarded each year to help the implementation of commercially-viable business proposals from students, post-doctoral researchers and recent graduates of The University of Manchester based on developing the commercial prospects of graphene and related 2D materials.

The first prize of £50,000 was awarded to Honeycomb Biotechnology and its founders; Christopher Bullock, a Biomedical Engineer in the School of Health Sciences who is due to complete his PhD on developing novel graphene biomaterials this autumn, and Richard Fu, a NIHR Academic Clinical Fellow and Specialty Registrar in Neurosurgery based at the Manchester Centre for Clinical Neurosciences.

The team are seeking to develop a surgically implanted device using graphene electrodes to deliver targeted electrotherapy for the treatment of Glioblastoma Multiforme- a form of brain cancer. They hope that this technology can work in conjunction with other treatment modalities to one day turn fatal adult brain cancer into a manageable chronic condition.

Richard Fu said: “Glioblastoma Multiforme (GBM) remains a tragic and deadly disease. This award provides us with the opportunity and funding to further develop what is currently an exploratory treatment idea that could one day make a meaningful difference to the lives of patients”.

Christopher Bullock added: “We are very grateful to Eli and Britt Harari for their generosity and for the support of the University, which has enabled us to try and turn our ideas into something that makes a real difference”.

"Our commitment to the support of student entrepreneurship across the University has never been stronger and is a vital part of our approach to the commercialisation of research. The support provided by Eli Harari over the last four years has enabled new and exciting new ventures to be developed. It gives our winners the early-stage funding that is so vital to creating a significant business, while also contributing to health and social benefit. With support from our world-leading graphene research facilities I am sure that they are on the path to success!"

 

Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor

The runner-up, receiving £20,000, was Advanced Graphene Structures (AGS), founded by Richard Fields, Alex Bento and Edurne Redondo. Richard has a PhD in Materials Science and Edurne has a PhD in Chemistry, they are both currently research associates at the University; Alex is currently working as a freelance aerospace engineer.

Richard Fields said: “Many industries are interested in benefiting from the properties of graphene, but they are hindered by a lack of new processing tools and techniques, ones which could more effectively capture these beneficial properties. We intend to develop new tools and techniques which can constructively implement graphene (alongside other 2D/nanomaterials) into advanced energy storage devices and composite materials”.

The technology aims to radically improve the performance of composite materials and batteries, this will be achieved by providing control over the structure and orientation of 2D/nanomaterials used within them. An added benefit of the solution is rapid deployment; the team have identified a real technological opportunity, which can be readily added to existing manufacturing processes.

Graphene is the world’s first two-dimensional material, one million times thinner than a human hair, flexible, transparent and more conductive that copper.

No other material has the same breadth of superlatives that graphene boasts, making it an ideal material for countless applications.

The quality of the business proposals presented in this year’s finals was exceptionally high and Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor of The University of Manchester and one of the judges for this year’s competition said: “Our commitment to the support of student entrepreneurship across the University has never been stronger and is a vital part of our approach to the commercialisation of research. The support provided by Eli Harari over the last four years has enabled new and exciting new ventures to be developed. It gives our winners the early-stage funding that is so vital to creating a significant business, while also contributing to health and social benefit. With support from our world-leading graphene research facilities I am sure that they are on the path to success!”

The winners will also receive support from groups across the University, including the University’s new state-of-the-art R&D facility, the Graphene Engineering Innovation Centre (GEIC), and its support infrastructure for entrepreneurs, the Manchester Enterprise Centre, UMIP and Graphene Enabled Systems; as well as wider networks to help the winners take the first steps towards commercialising these early stage ideas.

The award is co-funded by the North American Foundation for The University of Manchester through the support of one of the University’s former physics students Dr Eli Harari (founder of global flash-memory giant, SanDisk) and his wife Britt. It recognises the role that high-level, flexible early-stage financial support can play in the successful development of a business targeting the full commercialisation of a product or technology related to research in graphene and 2D materials.

Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

Source: University of Manchester

Tags:  Advanced Graphene Structures  AGS  Batt  Cancer  Eli and Brit Harari Graphene Enterprise Award  Graphene  Honeycomb Biotechnology  University of Manchester  UoM 

Share |
PermalinkComments (0)
 

How Tech Transfer Offices Are Leading the Commercialization of Graphene

Posted By Dexter Johnson, IEEE Spectrum, Thursday, June 28, 2018

Of the thousands of research papers that have been published on graphene, and the similarly high number of graphene-related patents that have been filed, a small percentage will ever see the light of day from a commercialization or application perspective.

To address this “Valley of Death”—as some have termed the gap between the lab and the fab—there exists one of the few mechanisms established to help move research from the laboratory to commercial production: the University Technology Transfer Office (TTO). These institutions are charged with identifying commercially viable intellectual property (IP) held by their university and then connecting with qualified and interested commercial and financial partners.

While on the best of days developing lab projects into commercially viable IP is a challenge, for an emerging technology like graphene there is another layer of difficulty that needs to be addressed.

“Early on the mention of the material’s performance, attributes and excitement around it led to unrealistic expectations as to its state of development. Many expected to be able to invest in or adopt a technology which was close to market use, when in fact there is more science development and engineering required to address most opportunities, certainly the more sophisticated markets.Remember that it took aluminium and carbon fibre some 30 years to go from discovery to serious use.explained Clive Rowland, CEO of the University of Manchester’s innovation company, UMI3.

One of the biggest challenges faced by university TTOs is to accurately forecast or identify commercially viable opportunities. When a material is completely new, as with graphene, it becomes exponentially harder to get that prediction model to be accurate.

“Initially, many thought that graphene would be used in electronic applications (the new silicon) but there was – at that time - little appreciation that there is no band gap in graphene, meaning that there are few breakthrough uses until that issue has been solved,” explained Rowland. “The hype around the electronic applications and hundreds if not thousands of patents filed for this area distorted the picture.Most likely it will be other 2D materials, or a combination of graphene with them, that will be better suited to electronic (and many other) applications.”

The issues faced by university TTOs are not just about getting a handle on predicting the real application potential for a technology, but also working with outside commercial and financial partners. When it comes to graphene, this problem is magnified due to a general lack of understanding about the quality issues surrounding graphene.

Rowland explains that this lack of understanding has led to some unrealistic expectations about graphene from those outside the research community. “It has been difficult to manage these expectations at the University TTO level since the external community (investors and industry) are really looking for and expecting us to have a set of products to license, or around which we can establish start-ups.”

Far from licensing or the establishment of start-ups, the reality is that the invention disclosures are very early-stage where risk capital and/or industrial collaborations are needed to develop these technologies to some stage higher up the Technology Readiness Level (TRL) scale, according to Rowland.

Rowland believes that it is still too early to measure the tangible outcomes that the University of Manchester has achieved in the commercialization of graphene. However, he notes that Manchester had set up a graphene characterization and consulting company early in the process called 2D Tech, which was acquired by a British engineering company Versarien that has since developed it further into a product development company.

In addition, UMI3 has established a joint IP development program with a British engineering firm (Morgan Advanced Materials) to scale up its graphene production method, which involves the exfoliation of graphite. They have also set up a company (Atomic Mechanics) to make and sell graphene pressure sensor products. After having brought this work to the stage of one or two demonstrators, Atomic Mechanics is now attracting the interest of seed investors, according to Rowland.

A potential mistake that other university TTOs might be making is to apply the usual tech transfer techniques to it and expect it to work.

“Graphene cannot really go the normal route from lab to market without special attention given to it,” said Rowland. “We treat it more like a portfolio approach and aim to use our Background IP as a basis to attract industrial collaborators to work with us in developing applications in our specialist centers.” These centers are the National Graphene Institute and the Graphene Engineering and Innovation Centre

Even with the huge strides Manchester has made in establishing an infrastructure to support the commercialization of graphene, Rowland concedes that they cannot nor should do it alone. It’s part of a bigger picture to create a Manchester cluster of graphene active companies located close to the campus. Also they need to engage entrepreneurs who have been successful in marketing engineered products and building companies to collaborate in developing those inventions that have breakthrough potential—so-called platform technologies that sustain a successful independent business.

“To achieve this we have set up a dedicated team of people who work alongside the TTO (essentially part of the TTO) to accelerate these more challenging areas of science and engineering,” said Rowland. “This accelerator is called Graphene Enabled. It’s another important aspect of a grander strategic approach. The Graphene Enabled approach needs to sit alongside our industrial collaboration activity, so that we bring the whole community that we need to commercialize graphene onto our campus (investors, entrepreneurs, business people, industrialists) and in an appropriate environment, so that it does not conflict with or divert from the first-class basic science research going on in our academic schools.”

Another organization that plays an important role in the commercialization ecosystem is The Graphene Council, a neutral platform that welcomes all dedicated stakeholders from academia and the commercial sector according to Terrance Barkan CAE, Executive Director of The Graphene Council.

“The mission of The Graphene Council is to act as a catalyst for the sustainable commercialization of graphene. We achieve this in part by augmenting and supporting the efforts of University Technology Transfer Offices, connecting them with potential partners while also providing market intelligence to help better understand where commercial opportunities exist,” said Barkan.

“We spend a good part of our time helping to educate the end-user markets that will be the future customers for graphene enabled products and solutions. Because we have the largest community in the world of professionals, researchers, application developers and end users that have an interest in graphene, we are an ideal partner and connector.”

-----------------------------------------------------------------

Stay informed and up-to-date, join today

 

(If you are working in a TTO and have an interest in graphene, be sure to download the attached file)

Download File (PDF)

Tags:  tech transfer offices  technology transfer  University of Manchester  university technology transfer office 

Share |
PermalinkComments (0)
 

Graphene Membranes Enable a Novel Approach to Ubiquitous Photodetectors

Posted By Dexter Johnson, IEEE Spectrum, Monday, March 12, 2018

Image: University of Manchester

Back in January, scientists in Andre Geim’s research team at the University of Manchester reported that light could be used to enhance proton transport through graphene.  What this means is the possibility of an entirely new class of photodetectors, which are used in just about everything from high-speed optical communication networks to the remote control for your TV.

Needless to say, an entirely new class of photodetectors—based on proton transport as opposed to all current photodetectors today that are based on electron transport—is a pretty significant development. You add on to this the fact that the photodetectors made from graphene are 100,000 times more responsive than silicon and you have the basis of a transformative technology.

What regular readers of The Graphene Council may have missed earlier this month in an Executive Q&A with Jeffrey Draa, CEO of Grolltex, was that we got some indications in that interview that the technology being developed in Geim’s lab is ramping up for commercial applications.

Draa said in the interview: “…we’re also starting to get some inquiries for an application that actually Dr. Andre Geim at the University of Manchester, who, of course, was the discoverer of graphene was very passionate about. This is one of the very first applications that he thought futuristically would really make the world a better place, and that third application that we're starting to see on the horizon is graphene as a proton exchange membrane in a hydrogen fuel cell.”

Draa in this interview points to the initial applications that were discussed almost four years ago for this graphene-based proton exchange membrane. At the time, Geim had discovered that contrary to the prevailing wisdom that graphene was impermeable to all gas and liquids  it could, in fact, allow protons to pass through. This made scientists immediately conjure up the proton exchange membranes that are central to the functioning of fuel cells.

While there’s no reason to think that these graphene membranes won’t someday make for excellent proton exchange membranes for fuel cells, the problem is that fuel cells are not exactly ubiquitous. However, photodetectors certainly are ubiquitous, making for a much larger potential market for these graphene membranes.

Of course, it’s a pretty big step to make these graphene membranes go from being used for fuel cells to being used in photodetectors. So how did this application switch occur?

The University of Manchester scientists started with monolayer graphene decorated with platinum (Pt) nanoparticles. In operation, photons (light) strike the membrane and excite the electrons in the graphene around the Pt nanoparticles. This makes the electrons in the graphene become highly reactive to protons. This, in turn, induces the electrons to recombine with protons to form hydrogen molecules at the Pt nanoparticles. This process mimics the way in silicon-based photodetectors operate based on electron-hole recombination.

While there are similarities between the semiconductor approach to electron-hole recombination, the photon-proton effect used in this graphene membrane would represent a big departure from the previous approach and nobody is quite sure what the implications might be.

However, it is clear that this graphene membrane that Grolltex is working on with the scientists at Manchester may have a new set of applications that extends far beyond just typical membrane-based technologies.

Tags:  Andre Geim  fuel cells  membranes  photodetectors  University of Manchester 

Share |
PermalinkComments (0)
 
Page 1 of 2
1  |  2