Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Future Surrey research stars backed with grants totaling £1 million by EPSRC

Posted By Graphene Council, The Graphene Council, Tuesday, April 30, 2019
Updated: Friday, April 26, 2019

Surrey University has recently seen four successful New Investigator Award applications - including projects that look at new techniques to better understand the movements of plastics in our oceans, an investigation into the next generation of dental materials, a project looking to develop a game-changing carbon capture material and security protocols for future communications networks.

Predicting the fate of our plastics

Dr Thomas Bond, Lecturer from Surrey’s Department of Civil and Environmental Engineering, was granted over £260,000 to develop his research that will better predict the location of plastic litter in the environment. It is not known where 99 percent of the ocean’s plastic litter is, making it difficult to deal with this catastrophic environmental problem. Dr Bond will be looking at how different commonly used plastics behave and he will be using several experimental tests to develop methods that predict the fate of plastics polluting our waters.

Dr Bond said: “The amount of plastic litter in the environment is growing rapidly. Its presence poses a severe threat to marine and freshwater life. However, at the heart of our knowledge of plastic litter lies a black hole. I hope this project will give us a clearer picture of what happens to plastic waste in the environment. We will also investigate whether promoting sustainable types of plastics may obviate the problem of plastic litter in the environment.”

Next generation of dental material

Dr Tan Sui, Lecturer in Materials Engineering from the Department of Mechanical Engineering Sciences, was given just over £250,000 to investigate the next generation of dental materials that could be key to improving oral restorative surgeries. Together with the Universities of Bristol and Birmingham, the National Physical Laboratory and the Agency for Science, Technology and Research, Dr Sui will look to create a material that acts and performs like natural dental materials, with improved longevity.

Dr Tan Sui said: “Thanks to the advances of science and medicine we are all living longer but, unfortunately, our teeth are not faring so well. We hope this project will give us a deep understanding of novel dental materials, especially zirconia-based composites, with bioinspired functionally graded and textured microstructures -- and of how through refinement they may be durable enough to become the optimal dental restorative products.”

Carbon capture

Dr Marco Sacchi, Royal Society University Research Fellow, was awarded £230,000 to develop a computational research project that will reduce the cost and increase the efficiency of materials for carbon capture. In his project, Dr Sacchi will use Graphene, a newly discovered “miracle” material that has promising physical and thermal properties. The project will see Dr Sacchi join forces with a multidisciplinary team of chemists, nanotechnologists and physicists in industry and academia to test Graphene’s scientific boundaries and whether it can be used to entrap and treat greenhouse gases.

Dr Sacchi said: “Climate change is the biggest challenge that faces our planet today. It is an incredibly complex problem that requires teamwork from across the scientific spectrum to find sustainable solutions. We believe that by combining theoretical modelling with experimental validation, material testing and applied catalysis we will be able test the boundaries of Graphene and maximise its societal impact.”

Cybersecurity

Dr Ioana Boureanu, Lecturer in the Department of Computer Science and Surrey Centre for Cyber Security, was awarded just under £300,000 for the Automatic Verification of Complex Privacy Requirements in Unbounded-Size Secure Systems (AutoPaSS) project. AutoPaSS will develop formal methods and software-tools needed to analyse security and, especially, privacy in modern communications systems. AutoPaSS is in collaboration with industrial partners Thales and Vector GB Ltd.

Dr Boureanu said: “Today's devices execute concurrently in numerous and hyper-connected ways. So, we need reliable system-analysis techniques that capture not only cybersecurity properties but also modern connectivity. Importantly, this becomes an even bigger challenge if one needs to faithfully analyse rich privacy properties, such as anonymity and users’ untraceability. AutoPaSS will address this gap in the formal verification of 2020s' secure systems such as those driven by Internet of Things and connected, smart cars.”

Professor David Sampson, Vice-Provost, Research and Innovation, said: “These fantastic projects show that the University of Surrey is generating a wealth of bold, novel and innovative research ideas that have the potential to change everyday lives and the health of the planet. I want to congratulate our up-and-coming academics on their first steps into leading a research project. As a University, we are committed to supporting them and we wish them every success in these first steps towards an independent research career.”

Tags:  David Sampson  Engineering and Physical Sciences Research Council  Graphene  Ioana Boureanu  Marco Sacchi  Plastics  Tan Sui  Thomas Bond  University of Surrey 

Share |
PermalinkComments (0)
 

New research uses graphene sensors to detect ultralow concentrations of NO2

Posted By Graphene Council, The Graphene Council, Wednesday, April 10, 2019
Updated: Wednesday, April 10, 2019
The research, as published in ACS Sensors, was led by an international collaboration of scientists from Linköping University, Chalmers University of Technology, Royal Holloway, University of London and the University of Surrey.

The findings demonstrate why single-layer graphene should be used in sensing applications and opens doors to new technology for use in environmental pollution monitoring, new portable monitors and automotive and mobile sensors for a global real-time monitoring network.

As part of the research, graphene-based sensors were tested in conditions resembling the real environment we live in and monitored for their performance. The measurements included, combining NO2, synthetic air, water vapor and traces of other contaminants, all in variable temperatures, to fully replicate the environmental conditions of a working sensor.

Key findings from the research showed that, although the graphene-based sensors can be affected by co-adsorption of NO2 and water on the surface, at about room temperature, their sensitivity to NO2 increased significantly when operated at elevated temperatures, 150 °C. This shows graphene sensitivity to different gases can be tuned by performing measurements at different temperatures.

Testing also revealed a single-layer graphene exhibits two times higher carrier concentration response upon exposure to NO2 than bilayer graphene — demonstrating single-layer graphene as a desirable material for sensing applications.

Christos Melios, a lead scientist on the project from NPL, said: “Evaluating the sensor performance in conditions resembling the real environment is an essential step in the industrialisation process for this technology.

“We need to be able to clarify everything from cross-sensitivity, drift in analysis conditions and recovery times, to potential limitations and energy consumption, if we are to provide confidence and consider usability in industry.”

By developing these very small sensors and placing them in key pollution hotspots, there is a potential to create a next-generation pollution map – which will be able to pinpoint the source of pollution earlier, in unprecedented detail, outlining the chemical breakdown of data in high resolution in a wide variety of climates.

Christos continued: “The use of graphene into these types of gas sensors, when compared to the standard sensors used for air emissions monitoring, allows us to perform measurements of ultra-low sensitivity while employing low cost and low energy consumption sensors. This will be desirable for future technologies to be directly integrated into the Internet of Things.”

NO2 typically enters the environment through the burning of fuel, vehicle emissions, power plants, and off-road equipment. Extreme exposure to NO2 can increase the chances of respiratory infections and asthma. Long-term exposure can cause chronic lung disease and is linked to pollution related death across the world.  

Figures from the European Environment Agency also links NO2 pollution to premature deaths in the UK, with the UK being ranked as having the second highest number of annual deaths in Europe. In 2014, 14,050 deaths in the UK were recorded as being NO2 pollution related, 5,900 of which were recorded in London alone1.

When interacted with water and other chemicals, NO2 can also form into acid rain, which severely damages sensitive ecosystems, such as lakes and forests.

Existing legislation from the European Commission suggests hourly exposure to NO2 concentration should not be exceeded by more than 200 micrograms per cubic metre (µg/m3) or ~106 parts per billion (ppb), and no more than 18 times annually. This translates to an annual mean of 40 mg m3 (~21 ppb) NO2 concentration2

In central London, for example, the average NO2 concentration for 2017 showed concentration levels of NO2 ranged from 34.2 to 44.1 ppb per month, a huge leap from the yearly average.

These figures show there is an urgent need for a low-cost solution to mitigate the impact of NO2 in the air around us. This work could provide the answer to early detection and prevention of these types of pollutants, in line with the government’s Clean Air Strategy.

Further experimentation in this area could see the graphene-based sensors introduced into industry within the next 2–5 years, providing an unprecedented level of understanding of the presence of NO2 in our air.

Tags:  Chalmers University of Technology  Christos Melios  Graphene  Linköping University  National Physical Laboratory  Royal Holloway  Sensors  University of London  University of Surrey 

Share |
PermalinkComments (0)