Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Batteries  nanomaterials  University of Manchester  CVD  First Graphene  Graphene Flagship  graphene oxide  coatings  electronics  Healthcare  Li-ion batteries  energy storage  graphene production  semiconductor  The Graphene Flagship  Applied Graphene Materials  composites  Graphite  Carbon Nanotubes  Haydale  Andre Geim  Battery  optoelectronics  polymers  Versarien  3D Printing  biosensors 

Versarien achieves "Verified Graphene Producer" status.

Posted By Terrance Barkan, Monday, April 1, 2019
Updated: Sunday, March 31, 2019

The Graphene Council is pleased to announce that Versarien plc is the first graphene company in the world to successfully complete the Verified Graphene Producer program, an independent, third party verification system that involves a physical inspection of the production facilities, a review of the entire production process, a random sample of product material and rigorous characterization and testing by a first class, international materials laboratory. 

The Verified Graphene Producer program is an important step to bring transparency and clarity to a rapidly changing and opaque market for graphene materials, providing graphene customers with a level of confidence that has not existed before. 

“We are pleased to have worked with the National Physical Laboratory (NPL) in the UK, regarded as one of the absolute top facilities for metrology and graphene characterization in the world.
 
They have provided outstanding analytical expertise for the materials testing portion of the program including Raman Spectroscopy, XPS, AFM and SEM testing services.” stated Terrance Barkan CAE, Executive Director of The Graphene Council.
 
Andrew Pollard, Science Area Leader of the Surface Technology Group, National Physical Laboratory, said: “In order to develop real-world products that can benefit from the ‘wonder material’, graphene, we first need to fully understand its properties, reliably and reproducibly.
 
 “Whilst international measurement standards are currently being developed, it is critical that material characterisation is performed to the highest possible level.
 
As the UK’s National Measurement Institute (NMI) with a focus on developing the metrology of graphene and related 2D materials, we aim to be an independent third party in the testing of graphene material for companies and associations around the world, such as The Graphene Council.” 
 
Neill Ricketts, CEO of Versarien said: “We are delighted that Versarien is the first graphene producer in the world to successfully complete the Graphene Council’s Verified Graphene Producer programme.”
 
“This is a huge validation of our technology and will enable our partners and potential customers to have confidence that the graphene we produce meets globally accepted standards.”

 

“There are many companies that claim to be graphene producers, but to enjoy the benefits that this material can deliver requires high quality, consistent product to be supplied.  The Verified Producer programme is designed to verify that our production facilities, processes and tested material meet the stringent requirements laid down by The Graphene Council.”

 “I am proud that Versarien has been independently acclaimed as a Verified Graphene Producer and look forward to making further progress with our collaboration partners and numerous other parties that we are in discussions with.”

James Baker CEng FIET, the CEO of Graphene@Manchester (which includes coordinating the efforts of the National Graphene Institute and the Graphene Engineering and Innovation Centre [GEIC]) stated: “We applaud The Graphene Council for promoting independent third party verification for graphene producers that is supported by world class metrology and characterization services."

"This is an important contribution to the commercialization of graphene as an industrial material and are proud to have The Graphene Council as an Affiliate Member of the Graphene Engineering and Innovation Centre (GEIC) here in Manchester ”. 

Successful commercialization of graphene materials requires not only the ability to produce graphene to a declared specification but to be able to do so at a commercial scale.

It is nearly impossible for a graphene customer to verify the type of material they are receiving without going through an expensive and time consuming process of having sample materials fully characterized by a laboratory that has the equipment and expertise to test graphene. 

The Verified Graphene Producer program developed by The Graphene Council provides a level of independent inspection and verification that is not available anywhere else. 

If you would like more information about the Verified Graphene Producer program or about other services and benefits provided by The Graphene Council, please contact;

Terrance Barkan CAE

Executive Director, The Graphene Council 

tbarkan@thegraphenecouncil.org  or directly at  +1 202 294 5563

Tags:  Andrew Pollard  Andy Pollard  Graphene  Graphene Standards  James Baker  Manchester  National Physical Laboratory  Neill Ricketts  NPL  Standards  Terrance Barkan  The Graphene Council  University of Manchester  UoM  Verified Graphene Producer  Versarien 

Share |
PermalinkComments (0)
 

2018 Eli and Brit Harari Graphene Enterprise Award Winners

Posted By Terrance Barkan, Tuesday, August 28, 2018

The two teams based at The University of Manchester are seeking breakthroughs by using graphene in the treatment of brain cancer and to radically improve battery performance.

The Eli and Britt Harari Graphene Enterprise Award, in association with Nobel Laureate Sir Andre Geim, is awarded each year to help the implementation of commercially-viable business proposals from students, post-doctoral researchers and recent graduates of The University of Manchester based on developing the commercial prospects of graphene and related 2D materials.

The first prize of £50,000 was awarded to Honeycomb Biotechnology and its founders; Christopher Bullock, a Biomedical Engineer in the School of Health Sciences who is due to complete his PhD on developing novel graphene biomaterials this autumn, and Richard Fu, a NIHR Academic Clinical Fellow and Specialty Registrar in Neurosurgery based at the Manchester Centre for Clinical Neurosciences.

The team are seeking to develop a surgically implanted device using graphene electrodes to deliver targeted electrotherapy for the treatment of Glioblastoma Multiforme- a form of brain cancer. They hope that this technology can work in conjunction with other treatment modalities to one day turn fatal adult brain cancer into a manageable chronic condition.

Richard Fu said: “Glioblastoma Multiforme (GBM) remains a tragic and deadly disease. This award provides us with the opportunity and funding to further develop what is currently an exploratory treatment idea that could one day make a meaningful difference to the lives of patients”.

Christopher Bullock added: “We are very grateful to Eli and Britt Harari for their generosity and for the support of the University, which has enabled us to try and turn our ideas into something that makes a real difference”.

"Our commitment to the support of student entrepreneurship across the University has never been stronger and is a vital part of our approach to the commercialisation of research. The support provided by Eli Harari over the last four years has enabled new and exciting new ventures to be developed. It gives our winners the early-stage funding that is so vital to creating a significant business, while also contributing to health and social benefit. With support from our world-leading graphene research facilities I am sure that they are on the path to success!"

 

Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor

The runner-up, receiving £20,000, was Advanced Graphene Structures (AGS), founded by Richard Fields, Alex Bento and Edurne Redondo. Richard has a PhD in Materials Science and Edurne has a PhD in Chemistry, they are both currently research associates at the University; Alex is currently working as a freelance aerospace engineer.

Richard Fields said: “Many industries are interested in benefiting from the properties of graphene, but they are hindered by a lack of new processing tools and techniques, ones which could more effectively capture these beneficial properties. We intend to develop new tools and techniques which can constructively implement graphene (alongside other 2D/nanomaterials) into advanced energy storage devices and composite materials”.

The technology aims to radically improve the performance of composite materials and batteries, this will be achieved by providing control over the structure and orientation of 2D/nanomaterials used within them. An added benefit of the solution is rapid deployment; the team have identified a real technological opportunity, which can be readily added to existing manufacturing processes.

Graphene is the world’s first two-dimensional material, one million times thinner than a human hair, flexible, transparent and more conductive that copper.

No other material has the same breadth of superlatives that graphene boasts, making it an ideal material for countless applications.

The quality of the business proposals presented in this year’s finals was exceptionally high and Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor of The University of Manchester and one of the judges for this year’s competition said: “Our commitment to the support of student entrepreneurship across the University has never been stronger and is a vital part of our approach to the commercialisation of research. The support provided by Eli Harari over the last four years has enabled new and exciting new ventures to be developed. It gives our winners the early-stage funding that is so vital to creating a significant business, while also contributing to health and social benefit. With support from our world-leading graphene research facilities I am sure that they are on the path to success!”

The winners will also receive support from groups across the University, including the University’s new state-of-the-art R&D facility, the Graphene Engineering Innovation Centre (GEIC), and its support infrastructure for entrepreneurs, the Manchester Enterprise Centre, UMIP and Graphene Enabled Systems; as well as wider networks to help the winners take the first steps towards commercialising these early stage ideas.

The award is co-funded by the North American Foundation for The University of Manchester through the support of one of the University’s former physics students Dr Eli Harari (founder of global flash-memory giant, SanDisk) and his wife Britt. It recognises the role that high-level, flexible early-stage financial support can play in the successful development of a business targeting the full commercialisation of a product or technology related to research in graphene and 2D materials.

Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

Source: University of Manchester

Tags:  Advanced Graphene Structures  AGS  Batt  Cancer  Eli and Brit Harari Graphene Enterprise Award  Graphene  Honeycomb Biotechnology  University of Manchester  UoM 

Share |
PermalinkComments (0)
 

Manchester and INOV-8 create enhanced rubber sole for running shoes

Posted By Terrance Barkan, Monday, December 11, 2017

inov-8 is launching a revolutionary world-first in the sports footwear market following a unique collaboration with scientific experts. The British brand has teamed up with The University of Manchester to become the first-ever company to incorporate graphene into running and fitness shoes.

Laboratory tests have shown that the rubber outsoles of these shoes, new to market in 2018, are stronger, more stretchy and more resistant to wear.

Michael Price, inov-8 product and marketing director, said: “Off-road runners and fitness athletes live at the sporting extreme and need the stickiest outsole grip possible to optimize their performance, be that when running on wet trails or working out in sweaty gyms. For too long, they have had to compromise this need for grip with the knowledge that such rubber wears down quickly."

“Now, utilising the groundbreaking properties of graphene, there is no compromise. The new rubber we have developed with the National Graphene Institute at The University of Manchester allows us to smash the limits of grip."

“Our lightweight G-Series shoes deliver a combination of traction, stretch and durability never seen before in sports footwear. 2018 will be the year of the world’s toughest grip.”

Commenting on the collaboration and the patent-pending technology, inov-8 CEO Ian Bailey said: “Product innovation is the number-one priority for our brand. It’s the only way we can compete against the major sports brands. The pioneering collaboration between inov-8 and the The University of Manchester puts us – and Britain – at the forefront of a graphene sports footwear revolution."

“And this is just the start, as the potential of graphene really is limitless. We are so excited to see where this journey will take us.”

The scientists who first isolated graphene were awarded the Nobel Prize for physics in 2010. Building on their revolutionary work, the team at The University of Manchester has pioneered projects into graphene-enhanced sports cars, medical devices and aeroplanes. Now the University can add sports footwear to its list of world-firsts.

Dr Aravind Vijayaraghavan, Reader in Nanomaterials at the University of Manchester, said: “Despite being the thinnest material in the world, graphene is also the strongest, and is 200 times stronger than steel. It’s also extraordinarily flexible, and can be bent, twisted, folded and stretched without incurring any damage.

“When added to the rubber used in inov-8’s G-Series shoes, graphene imparts all its properties, including its strength. Our unique formulation makes these outsoles 50% stronger, 50% more stretchy and 50% more resistant to wear than the corresponding industry standard rubber without graphene.”

“The graphene-enhanced rubber can flex and grip to all surfaces more effectively, without wearing down quickly, providing reliably strong, long-lasting grip."

“This is a revolutionary consumer product that will have a huge impact on the sports footwear market.”

 

 

Tags:  Composites  Graphene  inov-8  Manchester  Rubber  Shoes  UoM 

Share |
PermalinkComments (0)