Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

Global Graphene Group Named R&D 100 Award Finalist

Posted By Graphene Council, Friday, January 17, 2020
Global Graphene Group (G3) was honored recently by R&D World, naming G3’sgraphene-protected lithium metal anode for rechargeable metal batteries solution (HELiX™) a finalist for the 2019 R&D100 Award. The R&D 100 Awards recognize the top 100 most technologically significant new products of the year. 

HELiX is a single-layer graphene-protected lithium metal technology making high-energy rechargeable metal batteries viable. It allows extremely low anode usage (anode/cathode ratio ≤ 10%), creating an energy density over 350 Wh/kg and 1,000 Wh/L, which yields a 60-80% improvement over current lithium-ion batteries. This offers unprecedented opportunities for advanced portable devices/electric vehicles.

HELiX is a readily available, drop-in, graphene-enabled anode solution for all types of high-energy, lithium metal batteries (e.g. advanced Li-ion, all solid-state batteries, Li-S, Li-Se, and Li-air cells). It adds immediate value to any rechargeable battery, including, but not limited to power drones, renewable energy storage systems, aerospace applications, unmanned vehicles, and electric vehicles (EVs). Additionally, due to its performance, batteries can be reduced in size by 30-40% while still providing the required energy. This provides room for other components or allows for significant reductions in size and weight.  The most promising opportunity for HELiX graphene-enabled anode solutions is inEV batteries, where it can replace incumbent (graphite) technology today and drive an accelerated adoption of EVs due to improved cost and performance. 

“Rechargeable lithium metal batteries for next-generation portable devices and EVs must meet several challenging requirements: safety, high energy density, long cycle life, and low cost.This is the end-goal laid out by nearly every EV manufacturer for the foreseeable future,” said Dr. Aruna Zhamu, VP of New Product / Process Development at G3. 

“Global Graphene Group has developed an enabling anode-protecting technology that is essential to successful operation of safe, high-energy and long-cycle-life lithium metal batteries working with liquid, quasi-solid, or solid electrolytes,” continued Dr. Zhamu.“This HELiX product has overcome the long-standing issues thus far impeding successful commercialization of all the rechargeable batteries that make use of lithium metal as the anode material. OurHELiX technology is available and offers a drop-in, scalable, facile, cost reducing improvement over current solutions. It lowers the battery cost to less than$100 US$/kWh.”

G3 developed and produces the HELiX solution in its Dayton, Ohio, facilities. G3 was named an R&D 100 winner in 2018 for its graphene-enabled silicon anode (GCATM).

Tags:  Aruna Zhamu  Batteries  electric vehicle  Energy Storage  Global Graphene Group  Graphene  Li-Ion batteries  Lithium 

Share |
PermalinkComments (0)
 

A breath of fresh air for longer-running batteries

Posted By Graphene Council, Friday, January 10, 2020
DGIST researchers are improving the performance of lithium-air batteries, bringing us closer to electric cars that can use oxygen to run longer before they need to recharge. In their latest study, published in the journal Applied Catalysis B: Environmental, they describe how they fabricated an electrode using nickel cobalt sulphide nanoflakes on a sulphur-doped graphene, leading to a long-life battery with high discharge capacity.

“The driving distance of electric cars running on lithium-ion batteries is about 300 kilometers,” says chemist Sangaraju Shanmugam of Korea’s Daegu Gyeongbuk Institute of Science & Technology (DGIST). “This means it’s difficult to make a round trip between Seoul and Busan on these batteries. This has led to research on lithium-air batteries, due to their ability so store more energy and thus provide longer mileage.”

But lithium-air batteries face many challenges before they can be commercialized. For example, they don’t discharge energy as fast as lithium-ion batteries, meaning an electric car with a lithium-air battery might travel further without needing to recharge, but you’d have to drive very slowly. These batteries are also less stable and would need to be replaced more often.

Shanmugam and his colleagues focused their research on improving the capacity of lithium-air batteries to catalyse the reactions between lithium ions and oxygen, which facilitate energy release and the recharging process.

Batteries have two electrodes, an anode and a cathode. The reactions between lithium ions and oxygen happen at the cathode in a lithium-air battery. Shanmugam and his team developed a cathode made from nickel cobalt sulphide nanoflakes placed on a porous graphene that was doped with sulphur.

Their battery demonstrated a high discharge capacity while at the same time maintaining its battery performance for over two months without the capacity waning.

The success of the battery is due to several factors. The different-sized pores in the graphene provided a large amount of space for the chemical reactions to occur. Similarly, the nickel cobalt sulphide catalyst flakes posses abundant active sites for these reactions. The flakes also form a protective layer that makes for a more robust electrode. Finally, doping the graphene with sulphur and the interconnectivity of its pores improves the transportation of electrical charges in the battery. DOI: 10.1016/j.apcatb.2019.118283

The team next plans to work on improving other aspects of the lithium-air battery by conducting research on understanding the discharge/charge behaviours of the electrodes and its surface characteristics. “Once we’ve secured the core technologies of all parts of the battery and combined them, it will be possible to start manufacturing prototypes,” says Shanmugam.

Tags:  Batteries  Cobalt  Daegu Gyeongbuk Institute of Science & Technology  Graphene  Lithium  Nickel  Sangaraju Shanmugam 

Share |
PermalinkComments (0)
 

Robust electrodes could pave the way to lighter electric vehicles

Posted By Graphene Council, Tuesday, December 3, 2019
One of the biggest remaining problems facing electric vehicles – whether they are road-going, waterborne or flying – is weight. Vehicles must carry their energy storage, and in the case of electric vehicles this inevitably means batteries.

No matter how many advances electrical engineers make in improving energy density, batteries remain dense and heavy components, and this is a drag on vehicle performance.

One approach to reducing the weight of electric vehicles might be to incorporate energy storage into the structure of the vehicle itself, thereby distributing the mass all over the vehicle and reducing the need for a single large battery or even eliminating it altogether.

The stumbling block to this approach is that materials that are good for energy storage and release tend to have properties that are not useful for structural applications: they are often brittle, which has obvious safety implications.

A team led by a Texas A&M University chemical engineer, Jodie Lutkenhaus, now claims to have made progress towards solving this problem using an approach inspired by brain chemistry and a trick employed by shellfish to stick themselves to rocks.

In a paper in the journal Matter, Lutkenhaus and her colleagues explain how their studies of redox active polymers for energy storage led them to investigate the properties of dopamine, most familiar as a signal-carrying molecule in the brain involved in movement, but also a very sticky substance that mimics proteins found in the material that mussels use to fasten themselves tightly to any surface underwater.

The team used dopamine to functionalise – that is, chemically bond to – graphene oxide, and then combine this material into a composite with aramid fibres, better known as Kevlar. This composite is both strong and tough, with a structure and properties similar to the famously tough natural material nacre or mother-of-pearl, and the graphene in its structure conveys both lightness and electrical properties that make it useful as an electrode.

The researchers describe using this material to form the electrodes for a super capacitor, a kind of energy storage device which can be charged and discharged very quickly.

The paper reports the highest ever multifunctional efficiency (a metric which evaluates material based on both its mechanical and electrochemical performance) for graphene-based materials.

Tags:  batteries  electric vehicle  energy storage  Graphene  graphene oxide  Jodie Lutkenhaus  Journal Matter  mimics proteins  polymers  super capacitor  Texas A&M University 

Share |
PermalinkComments (0)
 

ZEN Graphene Solutions Reports Preliminary Results for Graphene Aerogel Battery Tests

Posted By Graphene Council, Tuesday, November 26, 2019
Updated: Tuesday, November 26, 2019
ZEN Graphene Solutions and its research partner, Deutsches Zentrum fur Luft- und Raumfahrt are pleased to report on additional encouraging results from their battery development program led by Dr. Lukas Bichler and his team at the University of British Columbia, Okanagan Campus (UBC-O). UBC-O has created a Graphene Aerogel composite anode material using a proprietary aerogel formulation containing doping with either ZEN’s reduced Graphene Oxide (rGO) or Graphene Preliminary results indicate that relatively low loadings (<5 wt.%) of graphene-based material, combined with this proprietary aerogel structure, can result in an anode with a significant specific discharge capacity. 

Preliminary best results were achieved with a 2 wt.% loading of Graphene dispersed in aerogel and resulted in an initial specific discharge capacity of 2800 mAh/g and a discharge capacity of 1300 mAh/g after 50 cycles at a current capacity of 186 mA/g. These unoptimized results are believed to be better than those currently reported in the literature for Graphene Aerogel batteries. DLR and ZEN will present a poster of the battery results at the Batterieforum in Berlin, Germany in January 2020. Graphene-containing aerogels could have the potential to be a low-cost, low-weight, high-performance composite materials for near future energy storage applications.

DLR has applied for and received federal funding from the Helmholtz Association to create a new Helmholtz Innovation Lab, called ZAIT, or the Center for Aerogels in Industry and Technology, which will be working together with industrial partners on the development of Aerogels. ZEN supported this application with a letter of intent indicating the Company would continue to collaborate with DLR in developing graphene-based aerogel batteries and other graphene-based products.

“Our work with the team at DLR has led to very promising research and we look forward to continuing this research both at UBC-O and within the new Center for Aerogels in Industry and Technology (ZAIT), a Helmholtz Innovation Lab” commented ZEN CEO Dr. Francis Dubé. Also, Dr. Bichler indicated that “this partnership brings together expertise from Canada and Germany to jointly develop high-tech energy storage systems, which are currently not available on the market”.

Tags:  Batteries  Deutsches Zentrum fur Luft- und Raumfahrt  Energy Storage  Francis Dubé  Graphene  graphene oxide  Lukas Bichler  University of British Columbia  ZEN Graphene Solutions 

Share |
PermalinkComments (0)
 

Thomas Skordas: "Graphene is on the way to changing our lives"

Posted By Graphene Council, Wednesday, October 2, 2019
Thomas Skordas, Director for Digital Excellence and Science Infrastructure, takes a look at the latest developments in graphene research on the occasion of Graphene Week 2019 – Europe's leading graphene conference, which brings together the latest innovations, leading-edge technology and research on graphene and other layered materials.

Graphene Week was a chance to hear about recent scientific discoveries and technological advances in graphene, one of the key technology areas in Europe today. The great strength of the Graphene Flagship is that it provides a nurturing environment for top scientists, researchers and industry to discover new uses for this fascinating material, which consists of a single layer of carbon atoms.

This year alone, the Flagship has scored some significant achievements. For example, it has used graphene to increase the lifetime of Perovskite solar cells, the most efficient way of converting sunlight to energy in existence, when facing conditions such as heat and moisture. Once they are commercially viable, they could be a game changer for the clean energy transition. Flagship researchers have also built silicon-graphene coin cell batteries, of which a high proportion of the components can be recycled. This patented technology forms the basis of the spin-off Bedimensional, which received a private investment of €18 million in 2018, and test production is expected to start in the coming months.

Graphene has the potential to change our lives, and we are witnessing more and more graphene product launches and spin-offs. The Flagship also regularly presents new demonstrators at events, such as the mobile phone-related technology shown at Mobile World Congress: this video shows what they presented. We are also looking forward to the publication in the next few weeks of a 400-page open-access book, the work of 70 co-authors, with information on how to produce graphene and up to 5000 other layered materials. It will be a “bible” for students and industrial manufacturers interested in the fabrication processes of these materials. We have come a long way: merely fifteen years ago, graphene was isolated for the first time ever, in pioneering experiments using pieces of Scotch tape, but today the methods for synthesising thousands of similar materials are available to anyone in the world.

Tags:  Batteries  Digital Excellence and Science Infrastructure  Graphene  Graphene Flagship  Thomas Skordas 

Share |
PermalinkComments (0)
 

Nanochains could increase battery capacity, cut charging time

Posted By Graphene Council, Tuesday, September 24, 2019
How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in today's batteries.

Purdue University scientists and engineers have introduced a potential way that these materials could be restructured into a new electrode design that would allow them to increase a battery's lifespan, make it more stable and shorten its charging time.

The study, appearing as the cover of the September issue of Applied Nano Materials, created a net-like structure, called a "nanochain," of antimony, a metalloid known to enhance lithium ion charge capacity in batteries.

The researchers compared the nanochain electrodes to graphite electrodes, finding that when coin cell batteries with the nanochain electrode were only charged for 30 minutes, they achieved double the lithium-ion capacity for 100 charge-discharge cycles.

Some types of commercial batteries already use carbon-metal composites similar to antimony metal negative electrodes, but the material tends to expand up to three times as it takes in lithium ions, causing it to become a safety hazard as the battery charges.

"You want to accommodate that type of expansion in your smartphone batteries. That way you're not carrying around something unsafe," said Vilas Pol, a Purdue associate professor of chemical engineering.

Through applying chemical compounds -- a reducing agent and a nucleating agent -- Purdue scientists connected the tiny antimony particles into a nanochain shape that would accommodate the required expansion. The particular reducing agent the team used, ammonia-borane, is responsible for creating the empty spaces -- the pores inside the nanochain -- that accommodate expansion and suppress electrode failure.

The team applied ammonia-borane to several different compounds of antimony, finding that only antimony-chloride produced the nanochain structure.

"Our procedure to make the nanoparticles consistently provides the chain structures," said P. V. Ramachandran, a professor of organic chemistry at Purdue.

The nanochain also keeps lithium ion capacity stable for at least 100 charging-discharging cycles. "There's essentially no change from cycle 1 to cycle 100, so we have no reason to think that cycle 102 won't be the same," Pol said.

Henry Hamann, a chemistry graduate student at Purdue, synthesized the antimony nanochain structure and Jassiel Rodriguez, a Purdue chemical engineering postdoctoral candidate, tested the electrochemical battery performance.

The electrode design has the potential to be scalable for larger batteries, the researchers say. The team plans to test the design in pouch cell batteries next.

Tags:  batteries  Battery  Graphene  Henry Hamann  Jassiel Rodriguez  Li-ion  nanomaterials  P. V. Ramachandran  Purdue University  Vilas Pol 

Share |
PermalinkComments (0)
 

Graphene IP Portfolio Made Available

Posted By Dexter Johnson, IEEE Spectrum, Tuesday, August 6, 2019
Updated: Thursday, August 1, 2019


Seattle, WA-based Allied Inventors (AI) is a $600M fund that has invested in early-stage technologies to help address industrial challenges. AI manages over 5,000 intellectual property assets in technology areas such as graphene, medical platforms, energy storage, and semiconductors. 

Now AI is looking to monetize its graphene IP portfolio consisting of 87 patents and pending applications through licenses or sale of the patent package. Over 91% of the patent portfolio has been granted in multiple jurisdictions including the US, China, Germany Japan, and India.

AI curated their technology portfolio by partnering with a large network of inventors from well-known universities, research institutions, and companies. In developing its graphene IP portfolio, AI sourced novel technologies relevant to producing quality large scale graphene, detecting graphene defects, and using graphene for a variety of applications.  The resulting IP portfolio consists of patents related to graphene manufacture and graphene applications like batteries, filtration, and nanoparticle composites. 

In one manufacturing process patent (US Patent 8,828,193 and 14/459,860), this technology is an electromagnetic radiation process that can operate at low temperatures and offers a way to rapidly produce graphene from graphite oxide on an industrial scale. Another patent (US Patent 15/313,855) involves the process of and system for converting carbon dioxide into graphene by focusing light beam on it.

In addition to graphene manufacturing patents, the portfolio includes technologies for making graphene-based materials. One of the patents (US Patent 9,944,774) is a simple and cost-effective process for forming graphene wrapped carbon nanotube based polymer composites. These composites can be used for strain sensing applications such as structural health monitoring.

Another patent (US Patent 9,499,410) describes a method for making metal oxide-graphene composites. The technology is based on a solvo-thermal process that can synthesize a variety of metal oxide-graphene composites. It is a simple one-step method for use in applications such as batteries and capacitors. 

“Our carefully-curated graphene portfolio has a wide range of important technologies for the manufacture and application of high quality graphene. This portfolio would be beneficial to companies in the graphene space that are interested in enhancing the value of their technology portfolio,” said Norman Ong, Business Analyst for AI. “While the preference is to monetize the entire IP portfolio, we would be open to exploring different options.” 

Ong invites any organization that is interested in the graphene IP portfolio to visit their website and to contact them directly at info@alliedinventors.com.

 

***

 

DISCLOSURE: The Graphene Council has NO INTEREST in the referenced patents and has no financial gain from the sale or license of any of the above referenced patents. This article is provided for informational purposes only and you are requested to contact the patent owners directly. 

Tags:  batteries  graphene production  Investment  sensors 

Share |
PermalinkComments (0)
 

High-safety, flexible and scalable Zn//MnO2 rechargeable planar micro-batteries

Posted By Graphene Council, Thursday, July 18, 2019
Updated: Monday, July 15, 2019
Increasing development of micro-scale electronics has stimulated demand of the corresponding micro-scale power sources, especially for micro-batteries (MBs). However, complex manufacturing process and poor flexibility of the traditional stacked batteries have hindered their practical applications.

Planar MBs have recently garnered great attention due to their simple miniaturization, facile serial/parallel integration and capability of working without separator membranes. Furthermore, planar geometry has extremely short ion diffusion pathway, which is attributed to full integration of printed electronics on a single substrate. Also, in order to get rid of the safety issues induced by the flammable organic electrolyte, the aqueous electrolyte, characterized by intrinsic nonflammability, high ionic conductivity, and nontoxicity, is a promising candidate for large-scale wearable and flexible MB applications. As the consequence, various printing techniques have been used for fabricating planar aqueous MBs. "In particular, screen printing can effectively control the precise pattern design with adjustable rheology of the inks, and is very promising for large-scale application." The author said.

In a new article published in Beijing-based National Science Review, Zhong-Shuai Wu at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, constructed aqueous rechargeable planar Zn//MnO2 batteries by an applicable and cost-effective screen printing strategy. "The planar Zn//MnO2 micro-batteries, free of separators, were manufactured by directly printing the zinc ink as the anode and γ-MnO2 ink as the cathode, high-quality graphene ink as metal-free current collectors, working in environmentally benign neutral aqueous electrolytes of 2 M ZnSO4 and 0.5 M MnSO4." The author stated. Diverse shapes of Zn//MnO2 MBs were fabricated onto different substrates, implying the potential for widespread applications.

The planar separator-free Zn//MnO2 MBs, tested in neutral aqueous electrolyte, deliver high volumetric capacity of 19.3 mAh/cm3 (corresponding to 393 mAh/g), at 7.5 mA/cm3, and notable volumetric energy density of 17.3 mWh/cm3, outperforming lithium thin-film batteries (<=10 mWh/cm3). Moreover, The Zn//MnO2 planar MBs present long-term cyclability, holding high capacity retention of 83.9% after 1300 times at 5 C, superior to stacked Zn//MnO2 MBs reported. Also, Zn//MnO2 planar MBs exhibit exceptional flexibility without observable capacity decay under serious deformation, and remarkable serial and parallel integration of constructing bipolar cells with high voltage and capacity output.

This satisfactory result will open numerous intriguing opportunities in various applications of intelligent, printed and miniaturized electronics. Also, this work will inspire scientists working in nanotechnology, chemistry, material science and energy storage, and may have significant impact on both future technological development of planar micro-scale energy-storage devices and research of graphene based materials.

Tags:  Batteries  Dalian Institute of Chemical Physics  Energy Storage  Graphene  Zhong-Shuai Wu 

Share |
PermalinkComments (0)
 

Leading Graphene Innovator Sees Graphene Market at a Tipping Point

Posted By Dexter Johnson, IEEE Spectrum, Wednesday, July 17, 2019

The Global Graphene Group (G3) has a 17-year relationship with graphene since Dr. Bor Jang, cofounder of Nanotek Instruments, Inc., discovered graphene in 2002.

Today, the G3 organization currently consists of three groupings of companies. First, there is Nanotek Instruments that holds the over three hundred patents the company has filed since its inception in 1997.

Another of the three branches involves graphene production and this branch includes Angstron Materials Group and Taiwan Graphene Company. Angstron Materials is involved in producing graphene intermediates and thermal interface materials. Taiwan Graphene Company produces graphene oxide and graphene powder.

The third branch of the corporate structure of G3 involves the company’s energy storage interests. This includes two companies: Honeycomb Battery Company and Angstron Energy Company. Angstron Energy produces both a high-energy silicon anode and a graphene-enabled cathode. Honeycomb Battery is focused on producing lithium-sulfur batteries, non-flammable electrolytes and next-generation lithium battery technologies.

G3 recently became a member of The Graphene Council and we took the opportunity to talk to the company’s representatives, including Dr. Jang. Here is our discussion.

Q: The Global Graphene Group (G3) has an interesting pedigree, being a holding company for Angstron Materials, Nanotek Instruments and Honeycomb Battery. Could you provide a bit of background of how the company came to be and how the various companies that make it up create an overall strategy for the commercialization of graphene?

A: In order to properly answer this question, we would like to tell a brief story about a 17-year relationship with graphene.

Dr. Bor Jang founded Nanotek Instruments Inc. in 1997 and over the past two decades, researchers at Nanotek have developed a broad array of nanomaterials and energy storage and conversion technologies.

A significant accomplishment of Nanotek researchers is the fact that Dr. Jang’s research team discovered/invented graphene in 2002, two years before Drs. A. Geim and K. Novoselov published their first paper on graphene in 2004 [Science 306, 666–669 (October 2004)]. Drs. Geim and Novoselov won the 2010 Nobel Physics Prize for their work on graphene.

There is no doubt that Drs. Geim and Novoselov have made highly significant contributions to graphene science and, as such, well-deserve this Nobel Prize. However, it is important for Graphene Council’s members and associates to recognize that Nanotek researchers had submitted three (3) US patent applications and delivered a lecture on graphene before October 2004 when that milestone paper was published. This fact is evidenced in the following:

  • B. Z. Jang and W. C. Huang, “Nano-scaled Graphene Plates,” US Patent Application No. 10/274,473 (submitted on 10/21/2002); now U.S. Pat. No. 7,071,258 (issued 07/04/2006).
  • B. Z. Jang, et al. “Process for Producing Nano-scaled Graphene Plates,” U.S. Patent Application No. 10/858,814 (06/03/2004).
  • Bor Z. Jang, “Nanocomposite compositions for hydrogen storage and methods for supplying hydrogen to fuel cells,” US Pat. Appl. No. 10/910,521 (08/03/2004); now US Pat. No. 7,186,474 (03/06/2007).
  • W. Schwalm, M. Schwalm, and B. Z. Jang, “Local Density of States for Nanoscale Graphene Fragments,” Am. Phy. Soc. Paper No. C1.157, 03/2004, Montreal, Canada.

(In March 2004, Dr. Jang and his colleagues (Drs. W. Schwalm, M. Schwalm, and J. Wagner) presented a paper at the American Physical Society’s Annual Meeting in Montreal, Canada that discussed the density of state function and related electronic properties of graphene.)

Contrary to the common misconception in the graphene space that the liquid phase exfoliation method was developed in 2008 by a Dublin College team (Hernandez, Y. et al. “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, 3, 563–568 (2008)), Dr. Zhamu/Dr. Jang’s research team at Nanotek developed this method and filed a patent application in 2007.

This provides an effective way of producing pristine graphene directly from graphite without chemical intercalation or oxidation [A. Zhamu, et al., “Method of Producing Exfoliated Graphite, Flexible Graphite, and Nano-Scaled Graphene Plates,” US Patent Application No. 11/800,728 (05/08/2007); now US Patent No. 7,824,651 (11/02/2010)].

Between 2002 and 2007, the Nanotek teams also developed other important graphene production processes, including chemical oxidation, supercritical fluid exfoliation, and electrochemical exfoliation.

Supported by significant IP on several different graphene production processes and graphene applications in composites, thermal management, supercapacitor, and batteries, etc., Drs. Zhamu and Jang decided to co-found Angstron Materials, Inc. in 2007 to begin to scale-up of selected graphene production processes and certain graphene application products.

Subsequently, after many years of development, prototyping, and mass production efforts and establishment of a vast IP portfolio, we found the timing was right for us to establish several business units for more effective commercialization of vastly different products for different industries.

Taiwan Graphene Company (TGC) was founded in 2015 as a leading producer of single-layer graphene oxide, graphene-based nano-intermediates and non-energy-focused application products. Angstron Energy Company (AEC) was founded in 2015 as producer of lithium battery anode and cathode materials. Honeycomb Battery Company (HBC) was also founded in 2015 as a developer and producer of next-generation safe and long-lasting lithium metal batteries, including quasi-solid state battery, lithium-sulfur battery, and lithium-air battery. Angstron Materials was assigned as a research and development company for development of new processes and products. Nanotek remains as the IP-holding company. As suggested by our investors, we also decided to position all five organizations under one umbrella – Global Graphene Group (G3).

Q: How are you marketing graphene at this point, i.e. are you selling graphene raw materials, master batches, etc.? Or are you developing products that incorporate graphene, specifically for Li-ion batteries? Are there other applications you’re pursuing in addition to energy storage?

A: Our Taiwan Graphene Co. (TGC) is selling graphene in powder and dispersion forms, masterbatches for composites, thermal management products, etc. Angstron Energy Co. (AEC) is selling graphene-enabled Si anode materials and graphene-enhanced cathode materials for the lithium-ion battery industry. Honeycomb Battery Company (HBC) is poised to commercialize lithium metal protection technology, non-flammable electrolytes, graphene-enabled sulfur and selenium cathodes, and graphene-enhanced current collectors for next-generation lithium batteries.

Q: What production methods do you use to make your graphene? How has this production avenue determined the applications for your material?

A: We use a combination of improved chemical oxidation process, liquid phase exfoliation, and other proprietary processes, which G3 invented. We have found that different applications require the use of different graphene types produced by different processes.

Q: What have you discovered to be the biggest challenges for your commercialization of graphene and how have you overcome them?

A: We see the greatest challenge to commercialization that it takes time to qualify the application of graphene into various products. We have relationships with several large OEMs in different markets working with our graphene. It just takes time to go through the qualification process.

Q: What direction do you see for the company in the future? Do you see the company moving further up the value chain to the point where all your graphene production is used internally?

A: The future is to grow. We’re targeting to reach $600m+ in annual sales within the next five years between the combination of products in our value chain and graphene raw materials.

Q: What do you think we can expect in the commercialization of graphene over the next 5 to 10 years?

A: Several major applications (so-called killer applications) of graphene are expected to emerge soon. We will see exponential growth as customers integrate graphene into their products to a point where large expansions of graphene manufacturing are necessary. The challenge will be keeping up with the demand.

Tags:  batteries  discovery  graphene  Nobel Prize 

Share |
PermalinkComments (0)
 

Flexible, transparent monolayer graphene device for power generation and storage

Posted By Graphene Council, Wednesday, May 15, 2019
Updated: Tuesday, May 14, 2019
Researchers at Daegu Gyeongbuk Institute of Science and Technology developed single-layer graphene based multifunctional transparent devices that are expected to be used as electronics and skin-attachable devices with power generation and self-charging capability (ACS Applied Materials & Interfaces, "Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems").

Senior Researcher Changsoon Choi's team actively used single-layered graphene film as electrodes in order to develop transparent devices. Due to its excellent electrical conductivity and light and thin characteristics, single-layered graphene film is perfect for electronics that require batteries.

By using high-molecule nano-mat that contains semisolid electrolyte, the research team succeeded in increasing transparency (maximum of 77.4%) to see landscape and letters clearly.

Furthermore, the research team designed structure for electronic devices to be self-charging and storing by inserting energy storage panel inside the upper layer of power devices and energy conversion panel inside the lower panel. They even succeeded in manufacturing electronics with touch-sensing systems by adding a touch sensor right below the energy storage panel of the upper layer.

Senior Researcher Changsoon Choi in the Smart Textile Research Group, the co-author of this paper, said that "We decided to start this research because we were amazed by transparent smartphones appearing in movies. While there are still long ways to go for commercialization due to high production costs, we will do our best to advance this technology further as we made this success in the transparent energy storage field that has not had any visible research performances."

Tags:  Batteries  Changsoon Choi  Daegu Gyeongbuk Institute of Science and Technolog  Graphene  nanomaterials 

Share |
PermalinkComments (0)
 
Page 1 of 3
1  |  2  |  3