Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: graphene  2D materials  Sensors  Nanomaterials  Electronics  University of Manchester  Batteries  Graphene Flagship  graphene oxide  Semiconductor  coatings  First Graphene  Graphite  Healthcare  CVD  Li-ion batteries  energy storage  carbon nanotubes  composites  optoelectronics  Versarien  Applied Graphene Materials  Battery  graphene production  nanoelectronics  photonics  The Graphene Flagship  Medical  polymers  Haydale 

Graphene Gives Aluminum-Based Explosives More Bang for the Buck

Posted By Graphene Council, Monday, February 24, 2020
Researchers from the U.S. Army have discovered a new way to get more energy out of energetic materials containing aluminum: by coating them with graphene oxide.

This discovery coincides with the one of the Army’s modernization priorities: Long Range Precision Fires. The new fining could lead to more energetic metal powders as propellant/explosive ingredients in Army munitions.

Lauded as a miracle material, graphene is considered the strongest and lightest material in the world. It’s also the most conductive and transparent, and the most expensive to produce. Its applications are many, extending to electronics by enabling touchscreen laptops via light-emitting diode and organic light-emitting diode LCDs and OLED displays. But oxidizing graphite makes graphene oxide (GO) much less expensive to make.

Although GO is a popular two-dimensional material that has attracted intense interest across numerous disciplines and materials applications, this discovery exploits GO as an effective light-weight additive for practical energetic applications using micron-size aluminum powders (uAl)—i.e., aluminum particles one millionth of a meter in diameter. This new work signals the Army beginning to develop better metal propellant/explosive ingredients to protect more lives for the Army warfighters.

"Aluminum (Al) can theoretically release a large quantity of heat (as much as 31 kilojoules per gram) and is relatively cheap due to its natural abundance,” says Chi-Chin Wu of the Army Research Lab. “µAl powders have been widely used in energetic applications.

“However, it is difficult to ignite them using an optical flash lamp due to its poor light absorption,” Wu continues. “To improve its light absorption during ignition, it is often mixed with heavy metallic oxides which decrease the energetic performance.”

Nanometer-sized Al powders (i.e., one billionth of a meter in diameter) can be ignited more easily by a wide-area optical flash lamp , and they release heat much faster than can be achieved using conventional single-point methods such as hotwire ignition. Unfortunately, nanometer-sized Al powders are costly. The team did, however, demonstrate the value of uAl/GO composites as potential propellant/explosive ingredients. It showed that GO lets of uAl via an optical flash lamp, releasing more energy at a faster rate—thus significantly improving the energetic performance of µAl beyond that of the more expensive nanometer-sized Al powder. The team also discovered that the ignition and combustion of µAl powders can be controlled by varying the GO content to get the desired energy output.

Images showing the structure of the µAl/GO composite particles were obtained by high resolution transmission electron (TEM) microscopy. “It is exciting to see through advanced microscopy how a simple mechanical mixing process can wrap µAl particles in a GO sheet,” says Wu.

The researchers also discovered that GO increased the amount of µAl reacting in the microsecond timescale—a regime analogous to the release of explosive energy during a detonation.

Upon initiation of the uAl/GO composite with a pulsed laser using a technique called laser-induced air shock from energetic materials (LASEM), the exothermic reactions of the µAl/GO accelerated the resulting laser-induced shock velocity beyond that of pure µAl or pure GO. So µAl/GO composite can increase the power of military explosives, as well as enhance the combustion and blast effects. This could, therefore , lead to longer range and/or more lethal weapons.

Tags:  Army Research Lab  Chi-Chin Wu  coatings  composites  Graphene  graphene oxide 

Share |
PermalinkComments (0)
 

Versarien plc US graphene operations update

Posted By Graphene Council, Tuesday, January 21, 2020
Versarien plc is pleased to provide an update on its US graphene operations. The Company continues to make progress with current and potential partners in the US.  As announced on 27 June 2019, the Company appointed Brian Berney as President of North American Operations at Versarien Graphene Inc., reporting to Neill Ricketts, CEO of Versarien.  Since then the Company has continued to enter into confidentiality agreements with potential partners to examine collaborations and develop trials in the region, including in particular, with a global tyre manufacturer.

Versarien has strengthened its US profile by attending two trade missions in Q4 2019, supported by the UK government.  In October 2019, Versarien attended the UK Supplier Showcase in Wichita, in conjunction with Spirit AeroSystems, and in December 2019 the Company was part of Innovate UK's Global Business Innovation Programme to Boston, which focused on graphene applications and technology in the electronics, composites and energy sectors.

Versarien Graphene, Inc. has a serviced office location.  Brian Berney, who is the only full-time employee in the US, is supported by the UK Company team, including from within the Company's laboratory facilities at the Graphene Engineering Innovation Centre in the UK. The Company also has access to third party laboratory facilities in Texas, which are utilised on a flexible basis and only as required.  This strategy is in line with the Group's approach to keep cost to a minimum and utilise customer's R&D facilities, where possible, as well as the Company's R&D expertise and available facilities in the UK.

Tags:  Brian Berney  composites  Electronics  Graphene  Graphene Engineering Innovation Centre  Neill Ricketts  Versarien  Versarien Graphene 

Share |
PermalinkComments (0)
 

Graphene Flagship partners up European academia and industry to make lighter composites for planes and cars

Posted By Graphene Council, Friday, December 6, 2019

The Graphene Flagship brought together top European researchers and companies to discuss the most disruptive ways graphene could enhance composites used in the aerospace, automotive and energy industries. The multidisciplinary team involved researchers from academic institutions, business enterprises such as Graphene Flagship Partners Nanesa and Avanzare, and large transportation end-user industries, such as Graphene Flagship Partners Airbus and Fiat. 

They showed that integrating graphene and related materials (GRMs) into fibre-reinforced composites (FRCs) has great potential to improve weight and strength, and helps to overcome the bottlenecks limiting the applications of these composites in planes, cars, wind turbines and more. Nowadays, the transportation industry is responsible for nearly one-third of global energy demand, and it is the major source of pollution and greenhouse gas emissions in urban areas. Graphene Flagship scientists are therefore continually trying to develop new materials to lower fuel usage and CO2 emissions, helping to mitigate environmental damage and climate change.

Graphene-integrated composites are an example of lighter materials with great potential for use in vehicle frameworks. They are constructed by introducing graphene sheets, a few billionths of a metre thick, into hierarchical fibre composites as a nano-additives. Hierarchical fibre composites are a type of composite material in which components of different sizes are combined in a controlled way to significantly improve the mechanical properties. They typically consist of micro- or mesoscopic carbon fibres, a few millionths of a metre thick, attached to a polymer matrix, and they are already used as building materials to make vehicles of all shapes and sizes.

Graphene's high aspect ratio, high flexibility and mechanical strength enable it to enhance the strength of weak points in these composites, such as at the interface between two different components. Its tunable surface chemistry also means that interactions with the carbon fibre and polymer matrix can be adjusted as needed. The fibre, polymer matrix and graphene layers all work together to distribute mechanical stress, resulting in a material with improved strength and other beneficial properties.

There are many challenges to consider. For instance, planes experience temperature changes between 20 °C and -40 °C every time they take off and land, with huge differences in pressure and humidity. Graphene-integrated composites therefore need to withstand water condensing and even freezing inside the fuselage. They also need to endure lightning strikes, which happen several times per month, so the conductive properties of graphene must be harnessed to create an electrically conductive framework that resists electromagnetic impulses. In cars, new structural materials must be able to withstand crash tests and be lightweight enough to ensure fuel efficiency. Graphene Flagship researchers are also investigating conductive materials to replace circuitry in car dashboards.

Researchers and end-users come together
Graphene Flagship partners at Queen Mary University and the National Graphene Institute, UK, FORTH-Hellas, Greece, CNR, Italy, and Chalmers University of Technology, Sweden, collaborated with researchers at the University of Turin, the University of Trento and KET-LAB, Italy, and the University of Patras, Greece, to provide perspectives from the research community. They worked with scientists at Graphene Flagship partner companies Nanesa, Italy, and Avanzare, Spain, to review the technological viability of graphene-incorporated FRCs.

Francesco Bertocchi, co-author of the paper and President of Nanesa, believes that graphene-incorporated FRCs are indeed feasible for vehicle design, and has created new composites with many essential properties for the transportation industries. "Thanks to the Graphene Flagship, Nanesa has worked in close synergy with many partners to create many different prototypes. These include properties such as flame retardancy, water vapor absorption barrier, high electrical and thermal conductivity, EMI shielding. We also integrated thermo-resistive systems for de-icing and anti-icing ," he says.

Graphene Flagship Partners Airbus and Fiat-Chrysler Automobiles, world leading aerospace and automotive industries, evaluated the impact of graphene-incorporated FRCs on the aerospace and automotive industries and assessed their commercial viability.

Tamara Blanco-Varela, co-author and materials & processes engineer at Airbus, explains that Airbus is working hard to make these materials viable for use in new aircraft models. "We all know that the aeronautical sector is very challenging for the introduction of new materials or technologies. Airbus is committed to making graphene-related materials fly as soon as possible, and a step-by-step approach is being set up," she says. By selecting 'quick-win' applications with immediate benefits to the aerospace industry, she anticipates that graphene-integrated FRCs will reach the market soon. "One example is using these materials for anti- and de-icing purposes in aeroplanes, for which Airbus will be leading activities targeting commercial exploitation of this technology. We are hoping for it to reach a high maturity level, with a target readiness level between five and six, in the next few years."

Brunetto Martorana, co-author and researcher at Graphene Flagship partner Fiat-Chrysler Automobiles, adds: "The interesting structural properties of graphene have opened an interesting window for designing novel light composites." He explains that new lightweight composite materials do not necessarily need to be lower in strength and introduce safety issues. "New approaches must be found to enhance the 'crashworthiness' of composites – and graphene composites may be able to fill that role," he continues. Fiat-Chrysler Automobiles have now committed to the commercialization of new composite materials, and will be leading a new initiative to bring this technology to market."

An uplifting outlook
"The Graphene Flagship provides a stable, clear, long-lasting partnership for different partners to work together. They all started their collaboration as part of our Composites Work Package", comments Vincenzo Palermo, Graphene Flagship Vice-Director and lead author of the paper. "The Graphene Flagship pushes all partners to have frequent interactions, with regular meetings – like in this case, partners who begun working on graphene with different motivations have come together to address common challenges," he says.

Costas Galiotis, the Graphene Flagship's Composites Work Package leader, expresses that this collaboration has been highly valuable. "This a comprehensive review of the work undertaken in the Graphene Flagship, and elsewhere, to confirm that the addition of GRMs provides benefits to many applications in the aerospace, automotive, energy and leisure industries."

Galiotis expresses particular interest in the review's analysis of the best ways to process GRMs into composites, the effect of this on the overall composite performance, and the challenges scientists face in the search for high performance composites. "Overall, I think this is a timely review article for the composites field, which should be read with interest by all parties involved with composite development and usage," he concludes.

 

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel, comments: "This paper shows the leadership of large corporations and small enterprises, all partners of the Graphene Flagship, in taking graphene composites to the market in the next few years. This yet again shows the steady progress of the Graphene Flagship along its technology and innovation roadmap."

Tags:  Aerospace  Airbus  Andrea C. Ferrari  Automotive  Avanzare  Brunetto Martorana  composites  Costas Galiotis  Fiat-Chrysler  Francesco Bertocchi  Graphene  Graphene Flagship  Nanesa  Tamara Blanco-Varela  Vincenzo Palermo 

Share |
PermalinkComments (0)
 

UW Study Significantly Advances Alignment of Single-Wall Carbon Nanotubes Along Common Axis

Posted By Graphene Council, Saturday, October 19, 2019
A University of Wyoming researcher and his team have shown, for the first time, the ability to globally align single-wall carbon nanotubes along a common axis. This discovery can be valuable in many areas of technology, such as electronics, optics, composite materials, nanotechnology and other applications of materials science.

“Unlike previous efforts to align nanotubes using nanotube solution filtration, we created an automated system that could create multiple aligned films at one time,” says William Rice, an assistant professor in UW’s Department of Physics and Astronomy. “Automating the filtration system also had the effect that we could precisely control the filtration flow rate, which produced higher alignment.”

Rice was corresponding author of a paper, titled “Global Alignment of Solution-Based, Single-Wall Carbon Nanotube Films via Machine-Vision Controlled Filtration,” which was published Oct. 9 in the print version of NanoLetters, an international journal that reports on fundamental and applied research in all branches of nanoscience and nanotechnology. An online version of the paper appeared last month.

Joshua Walker, a third-year physics Ph.D. student from Cheyenne, was the paper’s lead author. Valerie Kuehl, a third-year Ph.D. chemistry student from Beulah, Colo., was a contributing author of the paper.

Single-wall carbon nanotubes are one-dimensional crystals formed by wrapping a single layer of graphite, often called graphene, into a nanoscopic cylinder. They are 0.5 to 1.5 nanometers in diameter and range from 200 to 10,000 nanometers in length. One nanometer is one-billionth of a meter.

Because of this unique geometry, carbon nanotubes can either be metals or semiconductors, depending on how the graphene is wrapped, Rice explains. Carbon nanotubes can exhibit remarkable electrical conductivity, and they possess exceptional tensile strength and thermal conductivity.

“Aligned carbon nanotubes have the potential to act as excellent optical polarizers, which are important for optically determining strain in materials. For example, if you look at your windshield with polarized glasses, you can see areas of different strain in the glass,” Rice says. “Recent work by other groups also suggests that aligned nanotubes can be used as transistors, polarized light emitters and directional heat sinks. The hope is that a new generation of all-carbon electronics can be ushered in with the use of carbon nanotubes, graphene and vacancies in diamonds.”  

Over the last decade, substantial progress has been made in the chemical control of single-wall carbon nanotubes. Rice and his team used machine-vision automation and parallelization to simultaneously produce globally aligned, single-wall carbon nanotubes using pressure-driven filtration. Feedback control enables filtration to occur with a constant flow rate that not only improves the nematic ordering of the single-wall carbon nanotubes, but also provides the ability to align a wide range of single-wall carbon nanotube types and on a variety of nanoporous membranes using the same filtration parameters.

Additionally, Rice says his research team flattened the meniscus of the nanotube solution in the glass funnel using a treatment process called silanization. This prevented the nanotubes from becoming scrambled by an uneven solution front as the nanotubes were filtered. These two advances produce nanotube films that exhibit excellent alignment across the entire structure, which was measured using a variety of polarized optical techniques. 

 “Carbon nanotubes are significant material system because of their impressive physical properties, such as extremely high thermal conductivity; a Young's modulus much greater than steel; current-carrying capacity a thousand times that of copper; and excellent light-matter coupling,” he says.

A Young's modulus is ratio of the stress (force per unit area) to the strain (percentage change in the physical dimensions) in a material, Rice says. Plastics, rubber and wood have low Young's moduli, while steel, diamond and nanotubes have high Young's moduli.

Jeffrey Fagan, a chemical engineer with the Materials Science and Engineering Division at the National Institute of Standards and Technology (NIST); Adam Biacchi, a materials chemist with the Nanoscale Device Characterization Division of NIST; Thomas Searles, an assistant professor in Howard University’s Department of Physics and Astronomy; and Angela Hight Walker, a project leader with the Nanoscale Device Characterization Division of NIST, also contributed to the paper.

Tags:  Carbon Nanotubes  composites  Graphene  Joshua Walker  optics  University of Wyoming  Valerie Kuehl  William Rice 

Share |
PermalinkComments (0)
 

Nano-enhanced Boots Successfully Passed Safety Tests

Posted By Graphene Council, Monday, October 14, 2019
Updated: Tuesday, October 15, 2019
First Graphene, in collaboration with Steel Blue, has successfully completed safety tests for graphene-enhanced boots which will be used in various industrial sectors. This is the first time that graphene has been used successfully in thermoplastic polyurethane masterbatch, which presents considerable benefits including improved wear and chemical resistance, enhanced heat transfer, and reduced permeability.

This is the first time that graphene has successfully been incorporated into a thermoplastic polyurethane masterbatch and offers considerable advantages, including even greater wear and chemical resistance, better thermal heat transfer and reduced permeability.

Steel Blue is a major global manufacturer of work boots, with a reputation for innovative design to improve comfort, durability and safety. The adoption of graphene to boost these features still further is a continuation of this philosophy, as Chief Executive Officer, Garry Johnson, explains, “Steel Blue is committed to developing innovative solutions for our customers. We’re excited by these recent developments with First Graphene and look forward to delivering these solutions to our market.”

The prototype boots have been manufactured using First Graphene’s PureGRAPH 10 graphene powder. Unlike competing formulations, this is available in high production volumes with non-aggregated, uniform sized graphene nanoplatelets; this ensures that it disperses evenly in thermoplastic polyurethane (TPU) masterbatches.

The prototype boots incorporate PureGRAPH-infused TPU soles and polyurethane foam innersoles and will now undergo extensive laboratory testing, followed by field trials. Craig McGuckin, Managing Director for First Graphene said, “The development work with Steel Blue provides yet another example of how we’re working with customers to commercialise the development of graphene, to transform the properties of materials used in many different applications, from elastomers and composites, to concrete and specialised industrial coatings.”

Tags:  coatings  composites  Craig McGuckin  First Graphene  Garry Johnson  Graphene  graphene enhanced polymer  Steel Blue 

Share |
PermalinkComments (0)
 

UK's National Grid Verifies Viability of Graphene Composite Application

Posted By Graphene Council, Tuesday, May 21, 2019
Updated: Monday, May 20, 2019
Haydale plc has been working with the UK's National Grid to calculate the benefit case of its Composite Transition Piece (CTP), using a method developed by National Grid and verified by PwC during a previous audit. This approach provides a risk rating for the benefits. In this case the risk was assessed by National Grid as ‘low’, meaning that National Grid can have a high level of confidence in the results it will achieve.

There are around 300 locations on the National Transmission System in the UK where gas pipes pass through reinforced concrete walls, for example into valve pits. Currently, several types of seal are used to prevent contamination by water or soil, but when these seals fail technicians face a major task to fix the problem.

National Grid has found that Haydale’s CTP represents a huge step forward in safety and efficiency, solving a major problem for the national gas transmission network at a reduced cost over the system’s life-time. The solution allows easy access to transition pipes at pit wall transitions for inspection and maintenance. Working in conjunction with National Grid, the innovative CTP seal units can be used to plug the gap between the pipe and the wall. It means that technicians can easily remove the unit and check the pipe for corrosion or damage. The CTP can then be replaced quickly in one simple operation.

Financially, the benefits of installing a CTP are significant especially when viewed over the entire design life of the unit. Taking less time to inspect the pit wall area with a CTP fitted means that just under £230k could be saved over a design life of 50 years per unit installed. This is comparing an inspection using the traditional methods with the composite solution.

In addition to the cost benefits, National Grid estimates that 700 fewer hours of ‘at risk’ activities will be needed for each CTP during its design life. Working on the pit wall requires technicians to work inside a pit which may be several meters deep. Benefits can be tracked after the first inspection and continue for the entire design life of 50 years per unit, this can subsequently be extended further following a simple replacement of the seal around the CTP.

There are also environmental benefits and National Grid have calculated that the new approach will save 12 tonnes of carbon equivalent (CO2e) for each CTP over its 50-year lifespan. This is determined by examining tasks such as excavating soil to expose the pit wall and generator power needed on site for the duration of the works

Two key compressor sites have already undergone large-scale works where National Grid have utilised the new CTPs. In total, eight new CTPs have been pre-fabricated and will be installed during the construction of the pit wall, further reducing installation costs. These units, along with one that was installed as part of the original trial, will start to provide benefits after their first inspections.

David Banks, Chairman at Haydale, commented: “With 9 CTPs planned for installation by the end of 2019, we look forward to seeing the benefits realised by National Grid. We look forward to continuing our work with the utilities industry, where the benefit of both composite materials and graphene are now being appreciated.”

Keith Broadbent, CEO at Haydale, commented: “Haydale is pleased to be working with National Grid on this system which is a huge step forward in safety and efficiency for the gas network. With £228,000 average savings per CTP design life and 700 fewer hours carrying out ‘at risk’ activities for each CTP over 50-year period, it is clear to see the benefit that the system offers to the customer.We look forward to working with gas infrastructure owners worldwide who can also benefit from
the product.”

Paul Ogden, Senior Civil Engineer at National Grid, commented: “Over a six-year period, National Grid expects to install about 60 CTPs on the National Transmission System. This will significantly improve safety as well as creating savings of up to £5 million in the next five to 10 years.”

Tags:  composites  David Banks  Graphene  Haydale  Keith Broadbent  National Grid  Paul Ogden 

Share |
PermalinkComments (0)
 

Leading Supplier to Composites Companies Adds Graphene to Its Portfolio

Posted By Dexter Johnson, IEEE Spectrum, Friday, February 1, 2019

 

 

As an association trying to support and promote the use of graphene over the last half-decade, The Graphene Council has rightly focused on the interests and developments of the graphene research community as well as those companies marketing graphene materials. In addition, the Council has also sought to serve as an educational platform to help inform other vertical industries about the impact graphene can make on their businesses.

The Graphene Council recently got a boost to its knowledge base on how graphene is perceived by its largest commercial market: composites. Composites Onethe leading supplier in North America of materials and solutions to advanced composites manufacturers, recently joined The Graphene Council as a corporate member. Composites One positions itself as a team of composites experts that can provide insights on the latest advanced materials ranging from advanced fibers, to high-performance thermosets and thermoplastic systems, prepregs, and specialty core materials. The Graphene Council believes Composites One's expertise should reinforce its own knowledge that can then be distributed throughout our community.

To start this knowledge sharing, we took the opportunity to ask Jason Gibson, the Chief Applications Engineer at Composites One, a little bit about their business, how they came to graphene and what kind of outlook the company has for graphene in the composites market.

Q: Could you tell us a bit more about Composites One business, i.e. what kind of composites are you making and for what applications?

A: As North America’s leading provider of solutions for advanced composites manufacturers, Composites One stands ready to assist you, whatever your needs. We utilize the broadest portfolio of advanced raw materials to build comprehensive solutions, bringing you multiple options to meet your needs. Composites One supports our offering with strong technical expertise, along with local service and storage for reduced lead times. We are uniquely capable of handling complex requirements.

Our network of 41 stocking centers throughout the U.S. and Canada, including AS9120 and prepreg freezer locations, along with local delivery on our own fleet of trucks, ensures that your products are there when you need them. All of this is supported by a dedicated team of advanced composites specialists and our 80+ local technical sales representatives.

Q: What are some of the more advanced materials that Composites One has investigated for possibly integrating into your composite offerings?

A: From advanced fibers, to high-performance thermoset and thermoplastic systems, prepregs, specialty core materials, and ancillary products, we have the broadest product offering in the industry.   Our Advanced Composites product managers are specialists in epoxy resin, prepreg, carbon fiber, high performance core, and many other advanced composites solutions.

Q: What made you consider using graphene as a material for your composites, i.e. have you seen other composite manufacturers employing the material, or is it simple due diligence for all emerging materials?

A: We have seen graphene enhance many of the physical properties across the portfolio of resin systems we distribute.  Specifically, we've seen improved toughness, modulus and strength improvements allowing us to fill the needs of engineers and designers at many of our customers.  Composites One focuses on evaluating and distributing cutting edge products that allow us to help our customers meet their goals of improved products.

Q: Can you outline the process by which you would need to test to see if graphene, or any other new material, could be, or should be, integrated into your composites?

A: Composites One works in partnership with our suppliers, industry organizations and academic resources to vet and validate many nano-particles, including graphene.  We maintain a portfolio of diverse nano-particle products that enable us to provide objective solutions to our customers' needs.  This allows us to focus on an optimized solution based on the unique requirements of our customer.

Q: Based on your initial impressions of graphene, where are you expecting the material to fit into your product offerings?

A: We offer graphene in masterbatch form in multiple resin platforms, but focused mainly in our epoxy offerings.  Loadings can vary depending on the desired end results, and offering the masterbatch in the resin side of the epoxy allows for alternative hardening and additive solutions.  We have seen these products have success in multiple markets including sports and recreation, oil and gas, automotive and aerospace.

Q: At this point, what seems to be the issues that remain unclear about graphene, i.e. industry standards, how it will actually integrate into your composites, etc.?

A: Implementing these products into an industrial manufacturing process can be difficult.  Composites One has extensive experience in the process-ability of the nanoparticle enhancements we offer.  We do this in order to help our customers get over the usual hurdle of incorporating it into their manufacturing process.  It can be difficult to implement these solutions and our breadth and depth of experience in this product lines allows us to partner with our customers and help them move forward with minimal difficulties.

Tags:  composites  Composites One  masterbatches  prepregs  thermosets 

Share |
PermalinkComments (0)
 

2D Fluidics Pty Ltd created to launch the Vortex Fluidic Device (VFD)

Posted By Terrance Barkan, Friday, June 22, 2018

 

Advanced materials company, First Graphene Limited (“FGR” or “the Company”) (ASX: FGR) is pleased to announce the launch of its 50%-owned associate company, 2D Fluidics Pty Ltd, in collaboration with Flinders University’s newly named Flinders Institute for NanoScale Science and Technology

 

The initial objective of 2D Fluidics will be the commercialisation of the Vortex Fluidic Device (VFD), invented by the Flinders Institute for NanoScale Science and Technology’s Professor Colin Raston. The VFD enables new approaches to producing a wide range of materials such as graphene and sliced carbon nanotubes, with the bonus of not needing to use harsh or toxic chemicals in the manufacturing process (which is required for conventional graphene and shortened carbon nanotube production). 

 

This clean processing breakthrough will also greatly reduce the cost and improve the efficiency of manufacturing these new high quality super-strength carbon materials. The key intellectual property used by 2D Fluidics comprises two patents around the production of carbon nanomaterials, assigned by Flinders University. 

 

2D Fluidics will use the VFD to prepare these materials for commercial sales, which will be used in the plastics industry for applications requiring new composite materials, and by the electronics industry for circuits, supercapacitors and batteries, and for research laboratories around the world.

 

2D Fluidics will also manufacture the VFD, which is expected to become an in-demand state-of-the-art research and teaching tool for thousands of universities worldwide, and should be a strong revenue source for the new company. 

 

Managing Director, Craig McGuckin said “First Graphene is very pleased to be partnering Professor Raston and his team in 2D Fluidics, which promises to open an exciting growth path in the world of advanced materials production. Access to this remarkably versatile invention will complement FGRs position as the leading graphene company at the forefront of the graphene revolution.” 

 

Professor Colin Raston AO FAA, Professor of Clean Technology, Flinders Institute for NanoScale Science and Technology, Flinders University said “The VFD is a game changer for many applications across the sciences, engineering and medicine, and the commercialisation of the device will have a big impact in the research and teaching arena,” Nano-carbon materials can replace metals in many products, as a new paradigm in manufacturing, and the commercial availability of such materials by 2D Fluidics will make a big impact. It also has exciting possibilities in industry for low cost production where the processing is under continuous flow, which addresses scaling up - often a bottleneck issue in translating processes into industry.

Tags:  2D Fluidics  batteries  Carbon Nanotubes  circuits  Composites  electronics  First Graphene  Graphene  Plastics  research laboratories  supercapacitors  Vortex Fluidic Device (VFD) 

Share |
PermalinkComments (0)
 

Graphene Council Champions Graphene Standards

Posted By Dexter Johnson, IEEE Spectrum, Thursday, May 3, 2018

The Graphene Council has consistently been spearheading the development of standards around graphene. This is for good reason.

Ask just about any company involved in bringing graphene and graphene-enabled products to market—as we have—and  you will quickly realize that all these organizations consider standardization of the material as a critical need for the wider adoption of graphene.

To further heighten awareness of this issue, The Graphene Council recently contributed an article  to The Graphene Technology Journal published by Springer and Nature in which we conducted an interview with Norbert Fabricius, who is one of the leading authorities on the development of standards around graphene.

Of course, we have also interviewed our own Executive Director, Terrance Barkan, on how the industry can collectively accelerate the development of standards for graphene.  

After all this effort, others are beginning to seek us out to learn more about the development of standards related to graphene. In an interview with SciTech Europa, Barkan provides an in-depth look at where standards for graphene are now and their importance going forward. 

In this interview, Barkan references the Global Graphene Industry Survey and Report produced by The Graphene Council that even two years after its publication remains the most extensive survey of producers and users of graphene. Barkan also references some of the recent groundbreaking work that the Council is doing in educating the industry into how graphene can best be used in composites and plastics.

It appears the word is getting out about the quality of the studies and projects the Council has undertaken over the years in leading industry efforts from standards to health and safety issues and promoting greater understanding of how graphene fits into the value chain of a range of industries

Tags:  composites  health and safety  plastics  Standards  survey 

Share |
PermalinkComments (0)
 

Manchester and INOV-8 create enhanced rubber sole for running shoes

Posted By Terrance Barkan, Monday, December 11, 2017

inov-8 is launching a revolutionary world-first in the sports footwear market following a unique collaboration with scientific experts. The British brand has teamed up with The University of Manchester to become the first-ever company to incorporate graphene into running and fitness shoes.

Laboratory tests have shown that the rubber outsoles of these shoes, new to market in 2018, are stronger, more stretchy and more resistant to wear.

Michael Price, inov-8 product and marketing director, said: “Off-road runners and fitness athletes live at the sporting extreme and need the stickiest outsole grip possible to optimize their performance, be that when running on wet trails or working out in sweaty gyms. For too long, they have had to compromise this need for grip with the knowledge that such rubber wears down quickly."

“Now, utilising the groundbreaking properties of graphene, there is no compromise. The new rubber we have developed with the National Graphene Institute at The University of Manchester allows us to smash the limits of grip."

“Our lightweight G-Series shoes deliver a combination of traction, stretch and durability never seen before in sports footwear. 2018 will be the year of the world’s toughest grip.”

Commenting on the collaboration and the patent-pending technology, inov-8 CEO Ian Bailey said: “Product innovation is the number-one priority for our brand. It’s the only way we can compete against the major sports brands. The pioneering collaboration between inov-8 and the The University of Manchester puts us – and Britain – at the forefront of a graphene sports footwear revolution."

“And this is just the start, as the potential of graphene really is limitless. We are so excited to see where this journey will take us.”

The scientists who first isolated graphene were awarded the Nobel Prize for physics in 2010. Building on their revolutionary work, the team at The University of Manchester has pioneered projects into graphene-enhanced sports cars, medical devices and aeroplanes. Now the University can add sports footwear to its list of world-firsts.

Dr Aravind Vijayaraghavan, Reader in Nanomaterials at the University of Manchester, said: “Despite being the thinnest material in the world, graphene is also the strongest, and is 200 times stronger than steel. It’s also extraordinarily flexible, and can be bent, twisted, folded and stretched without incurring any damage.

“When added to the rubber used in inov-8’s G-Series shoes, graphene imparts all its properties, including its strength. Our unique formulation makes these outsoles 50% stronger, 50% more stretchy and 50% more resistant to wear than the corresponding industry standard rubber without graphene.”

“The graphene-enhanced rubber can flex and grip to all surfaces more effectively, without wearing down quickly, providing reliably strong, long-lasting grip."

“This is a revolutionary consumer product that will have a huge impact on the sports footwear market.”

 

 

Tags:  Composites  Graphene  inov-8  Manchester  Rubber  Shoes  UoM 

Share |
PermalinkComments (0)
 
Page 1 of 2
1  |  2