Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs

​Graphene cleans water more effectively

Posted By Graphene Council, Friday, March 27, 2020

Billions of cubic meters of water are consumed each year. However, lots of the water resources such as rivers, lakes and groundwater are continuously contaminated by discharges of chemicals from industries and urban area. It’s an expensive and demanding process to remove all the increasingly present contaminants, pesticides, pharmaceuticals, perfluorinated compounds, heavy metals and pathogens. Graphil is a project that aims to create a market prototype for a new and improved way to purify water, using graphene.

Graphene enhanced filters for water purification (GRAPHIL) is one of eleven selected spearhead projects funded by The Graphene Flagship, Europe’s biggest initiative on graphene research, involving more than 140 universities and industries located in 21 countries. Chalmers is the coordinator of the Graphene Flagship.

The purpose of the spearhead projects which will start in April 2020, building on previous scientific work, is to take graphene-enabled prototypes to commercial applications. Planned to end in 2023, the project aims to produce a compact filter that can be connected directly onto a household sink or used as a portable water purifying device, to ensure all households have access to safe drinking water.

"This is a brand-new research line for Chalmers in the Graphene flagship, and it will be a strategic one. The purification of water is a key societal challenge for both rich and poor countries and will become more and more important in the next future. In Graphil, hopefully we will use our knowledge of graphene chemistry to produce a new generation of water purification system via interface engineering of graphene-polysulfone nanocomposites," says Vincenzo Palermo, professor at the Department of industrial and materials science.
 
Graphene enhanced filters outperforms other water purification techniques
Most of the water purification processes today are based on several different techniques. These are adsorption on granular activated carbon that removes organic contaminants, membrane filtration that removes for example, bacteria or large pollutants, and reverse osmosis. Reverse osmosis is the only technique today that can remove organic or inorganic emerging concern contaminants with high efficiency. Reverse osmosis has however high electrical and chemical costs both from the operation and the maintenance of the system.
 
Many existing contaminants present in Europe’s water sources, including pharmaceuticals, personal care products, pesticides and surfactants, are also resistant to conventional purification technologies. Consequently, the number of cases of contamination of ground and even drinking water is rapidly increasing throughout the world, and it is matter of great environmental concern due to their potential effect on the human health and ecosystem.
 
Graphil is instead proposing to use graphene related material polymer composites. Thanks to the unique properties of graphene, the composite material favours the absorption of organic molecules. Its properties also allow the material to bind ions and metals, thus reducing the number of inorganic contaminants in water. Furthermore, unlike typical reverse osmosis, granular activated carbon and microfiltration train systems, the graphene system will provide a much simpler set up for users.

Graphil will not just replace all the old techniques, but significantly out-perform them both in efficiency and cost. The filter works as a simple microfiltration membrane, and this simplicity requires lower operation pressures, amounting in reduced water loss and lower maintenance costs for end users.
 
Upscaling the technique for industrial use
Chalmers has, in collaboration with other partners of the Graphene Flagship, investigated during the last years the fundamental structure-property relationships of graphene related material and polysulfones composition in water purification. A filter has then been successfully developed and validated in an industrial environment by the National Research Council of Italy (CNR) and the water filtration supplier Medica.

Now the task is to integrate the results and prove that the production can be upscaled in a complete system for commercial use.

Prof. Vincenzo Palermo and Dr. Zhenyuan Xia from the department of Industrial and Materials Science, Chalmers will support Graphil with advanced facilities for chemical, structural and mechanical characterization and processing of graphene oriented-polymer composite on the Kg scale. Chalmers’ role in the project will be to perform chemical functionalization of the graphene oxide and of the polymer fibers used in the filters, to enhance their compatibility and their performance in capturing organic contaminants.

"We are very excited to begin this new activity in collaboration with partners from United Kingdom, France and Italy, and I hope that my previous ten years’ international working experience in Italy and Sweden will help us to better fulfil this project," says Zhenyuan Xia, researcher at the Department of industrial and materials science.
 
 
Partners
Graphil is a multidisciplinary project that consists of both academic and industry partners. The academic partners include Chalmers, the National Research Council of Italy (CNR) and the University of Manchester. The industrial partners are Icon Lifesaver, Medica SpA and Polymem S.A – all European industry leaders in the water purification sector. The aim is to have a working filter prototype that can be commercialized by the industry for household water treatment and portable water purification.
 
Funding
The Graphene Flagship is one of the largest research projects funded by the European Commission. With a budget of €1 billion over 10 years, it represents a new form of joint, coordinated research, forming Europe's biggest ever research initiative. The Flagship is tasked with bringing together academic and industrial researchers to take graphene from academic laboratories into European society, thus generating economic growth, new jobs and new opportunities.
 
The total budget of the spearhead project GRAPHIL will be 4.88 million EURO and it will start from April 2020 with a total period of 3 years.

Tags:  Chalmers University of Technology  Graphene  Graphene Flagship  GRAPHIL  nanocomposites  Vincenzo Palermo  water purification  Zhenyuan Xia 

Share |
PermalinkComments (0)
 

Dr. Swati Ghosh Acharyya selected for SERB Women Excellence Award-2020

Posted By Graphene Council, Friday, March 20, 2020
Dr. Swati Ghosh Acharyya, Associate Professor, School of Engineering Sciences and Technology, University of Hyderabad has been selected for the prestigious SERB Women Excellence Award-2020. This award is given to women scientists under the age of 40, who have received honours from various national academies. Women researchers will be assisted by Science and Engineering Research Board (SERB) of the Department of Science and Technology, Government of India, with a grant of Rs 5 lakhs per year for 3 years.

Dr. Swati Ghosh Acharyya’s research encompasses development of novel corrosion resistant materials and surfaces. Her team has recently developed an eco-friendly route for bulk synthesis of graphene under ambient conditions. Graphene based nanocomposites have been fabricated by her team to synthesize corrosion resistant, abrasion resistant, hydrophobic, high temperature resistant and high strength coatings.

These composites would also be used for fabrication of water purification membranes and self powered corrosion resistant sensors for heavy metal ion detection in water. Her project entitled ‘Real time detection of heavy metal ions in ground water by stripping voltammetry using indigenously fabricated self-powered, corrosion resistant, pH insensitive, flexible nano-composite based electrochemical sensors: concept to product (RISE)’ has been recommended under the  SERB-Women Excellence Award of Science and Engineering Research Board (SERB) for funding.

Tags:  coatings  Graphene  nanocomposites  Science and Engineering Research Board  Swati Ghosh Acharyya  University of Hyderabad 

Share |
PermalinkComments (0)
 

Thomas Swan announce successful Graphene application collaboration with the Graphene Engineering Innovation Centre

Posted By Graphene Council, Wednesday, February 19, 2020
Thomas Swan & Co. Ltd., one of the UK’s leading independent chemical manufacturers, today announced that the Graphene Engineering Innovation Centre (GEIC) in Manchester have produced a fibre using Polyamide 6 and 0.2% loading of Thomas Swan Graphene Nanoplatelets (GNP’s).
 
GEIC successfully extruded and subsequently spun 1.5km of the fibre with 0.39mm diameter. This bodes well for continuing our development of graphene in Nanocomposites and shows positive traction for Thomas Swan’s commitment to Advanced Materials R&D, specifically graphene. Typical applications for this type of monofibre include carbon brushes for motors, seat belts or fishing lines.

Michael Edwards, Commercial Director – Advanced Materials at Thomas Swan said “this is yet another example of the use of our GNP in nanocomposite applications. We will continue our collaboration with the GEIC to enhance the range of polymeric solutions available for various application examples, demonstrating our continued commitment to graphene production”.
 
John Vickers, Application Specialist at GEIC said “The fibre reel was manufactured at the GEIC facility at The University of Manchester, using the Xplore fibre spin line. The Line can produce fibres at a speed of 0.5 to 90 M/min via a controlled Godet. The picture shows a fibre diameter of 0.39mm (monofilament) with 0.2% graphene addition in a PA6 polymer. The Xplore fibre spin line has the capability of spinning materials down to typically 50 microns, subject to formulation.”

Tags:  Graphene  Graphene Engineering Innovation Centre  John Vickers  Michael Edwards  nanocomposites  polymers  Thomas Swan 

Share |
PermalinkComments (0)
 

Thomas Swan awarded funding from Innovate UK to further improve its graphene products

Posted By Graphene Council, Tuesday, January 21, 2020
Thomas Swan & Co. Ltd., one of the UK’s leading independent chemical manufacturers, today announced that it has been awarded funding from Innovate UK, under the Analysis for Innovators programme. The funding will support a project to develop a QC method for determining the aspect ratio for graphene nanoplatelets (GNP), working with the National Physical Laboratory (NPL), the UK’s National Metrology Institute and a World-renowned centre of excellence.

Thomas Swan is a global leader in the manufacture of carbon nanomaterials and 2D materials through patented high-shear liquid phase exfoliation technology. The ability to produce different variants and forms of graphene is of huge significance to Thomas Swan. In order to achieve this ambition, high aspect ratio graphene materials must be produced.

The grant aims to enhance Thomas Swan’s ability to measure the aspect ratio of its graphene products, which is currently done using their suite of SEM, PSD, Raman and other methods. The programme will focus on the Elicarb® GNP product line currently offered by Thomas Swan.

The project will allow Thomas Swan to become even more competitive in the field, by offering its customers a quick and cost-effective tool to improve the level of characterisation of its GNP products and therefore guaranteeing a higher quality and consistency of its materials. Furthermore, this will increase the number of options available to customers, resulting in the delivery of more refined products, allowing Thomas Swan to compete more effectively in areas of UK-focused innovation such as the nanocomposites, lubricants and battery materials application areas.

Michael Edwards, Commercial Director – Advanced Materials at Thomas Swan said, “being able to continue our close collaboration with the NPL means that we can maintain our high standard of product characterisation, integrity and quality which is paramount in the volume materials manufacturing business”.

Keith Paton, Senior Research Scientist at NPL said “this is a fantastic opportunity to apply the measurement capability developed at NPL to support UK industry to improve productivity and product quality. We are looking forward to working with Thomas Swan to deliver improved quality control measurement techniques to monitor the graphene nanoplatelet aspect ratio”

Tags:  2D materials  Graphene  Innovate UK  Keith Paton  Michael Edwards  nanocomposites  nanomaterials  National Physical Laboratory  Thomas Swan 

Share |
PermalinkComments (0)
 

Colloids funds graphene nanocomposites collaborative Ph.D research project with The University of Manchester

Posted By Graphene Council, Thursday, October 17, 2019
Updated: Thursday, October 17, 2019
Colloids Group, a leading manufacturer of innovative masterbatches, compounds, and performance enhancing additives, is funding a joint collaborative Ph.D. research project with the Graphene Engineering Innovation Centre (GEIC) at The University of Manchester. The centre specialises in the rapid development and scale up of graphene and other 2D materials applications and focuses on several application areas to rapidly accelerate the development and commercialisation of new graphene technologies.The GEIC is an industry-led innovation centre, designed to work in collaboration with industry partners to create, test and optimise new concepts for delivery to market, along with the processes required for scale up and supply chain integration.

Phase 1 of this collaborative project was successfully completed within 12 months. Phase 2, which is about to start, is expected to be a three to four year research project. For this next phase, Colloids is funding and supporting a full time Ph.D. researcher who will be based at University of Manchester with the Advanced nanomaterials Group led by Dr. Mark A. Bissett and Professor Ian A. Kinloch. The Ph.D. researcher will also be working with and supervised by key Colloids’ R & D people involved in the project.  

The potential benefits of 2D thermoplastic nanocomposites have long been recognized. The project team will investigate the applicability of nanocomposites based on graphene and other two-dimensional (2D) materials to a broad range of thermoplastic materials, including polyolefins, polyamides and polyesters, and to understand how mechanical, thermal, electrical, rheological and gas-barrier properties (among others) are affected by the production process and by the materials used.  

The main goal of this collaborative Ph.D. research project is to develop and upscale new polymer-graphene nanocomposites with enhanced properties and multifunctional capabilities that are not currently available. Key target markets for ‘next generation’graphene nanocomposite Colloids products include automotive, aerospace, electronics and electrical.

As the research project is through Graphene@Manchester, the collaborative project teambenefits from access to the extensive graphene research facilities at The University of Manchester: the National Graphene Institute (NGI), the Graphene Engineering Innovation Centre (GEIC), and theHenry Royce Institute. The University of Manchesteris a globally recognized centre of excellence for cutting edge graphene research, building upon the published work by Professor Andre Geim and Professor Konstantin Novoselov, who won the Nobel Prize in Physics in 2010 for isolating, characterising and contacting ground-breaking experiments regarding the two-dimensional material graphene.

Colloids Group is exhibiting with parent company, TOSAF Group Ltd. (Booth# Hall 8a / D01) at the K’19 Plastics & Rubber exhibition in Dusseldorf, Germany, which runs from 16-23 October 2019. Show visitors from companies interested in the graphene nanocomposites collaborative project can speak with technical people from the Colloids’ team who will be at the show.

Tags:  2D materials  Colloids Group  Graphene  Ian A. Kinloch  Mark A. Bissett  nanocomposites  nanomaterials  polymers  University of Manchester 

Share |
PermalinkComments (0)
 

Laser-induced graphene composites are eminently wearable

Posted By Graphene Council, Monday, June 24, 2019
Graphene has a unique combination of properties that is ideal for next-generation electronics, including mechanical flexibility, high electrical conductivity, and chemical stability. The burgeoning field of wearable electronics – 'smart' fabrics with invisibly integrated energy harvesting, energy storage, electronics and sensor systems – benefits from graphene in numerous ways. Graphene materials, be they pristine or composites, will lead to smaller high-capacity and fast-charging supercapacitors, completely flexible and even rollable electronics and energy-storage devices, and transparent batteries.

To realize the commercial potential of graphene, it is necessary to develop reliable, cost-effective and facile processes for the industry-scale fabrication of graphene-based devices.

One possible route is inkjet printing, already extensively demonstrated with conductive metal nanoparticle inks. Although liquid-phase graphene dispersions have been demonstrated, researchers are still struggling with sophisticated inkjet printing technologies that allow efficient and reliable mass production of high-quality graphene patterns for practical applications.

A novel solution comes from the team at Joseph Wang's Laboratory for Nanobioelectronics at UC San Diego. Reporting their findings in Advanced Materials Technologies ("Laser-Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics"), they demonstrate the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component.

As a proof-of-concept, the researchers fabricated a stretchable micro-supercapacitor (S-MSC) demonstrating the highest capacitance reported for a graphene-based highly stretchable MSC to date. This also is the first example of using laser-induced graphene in the form for a powder preparation of graphene-based inks and subsequently for use in screen-printing of S-MSC.

Back in 2014, researchers at Rice University created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser, a technique they called laser-induced graphene (LIG). This high-yield and low-cost graphene synthesis process works in air at room temperature and eliminates the need for hot furnaces and controlled environments, and it makes graphene that is suitable for electronics or energy storage.

"LIG can be prepared from a few polymeric substances, such as Kapton polyimide and polyetherimide, as well as various sustainable biomasses, including wood, lignin, cloth, paper, or hydrothermal carbons," Farshad Tehrani, the paper's first author. "On the other hand, LIG has considerably enhanced dispersion in typical solvent and binders due to its inherently abundant defects and surface functional groups."

He points out that the team's novel method, while maintaining the distinct advantages of the direct-written LIG, unlocks untapped potentials of the LIG material in several areas:

Mechanical stretchability: In this study, the inherently brittle and mechanically fragile LIG electrodes are turned into a mechanically robust, highly stretchable electrodes, with the new ink attractive for diverse wearable electronic devices.

Enhanced electrochemical performance: The areal capacitance of the team's S-MSC has far surpassed that of direct-written laser LIG and has produced the highest areal capacitance reported for highly stretchable supercapacitors.

Customized composite formulations: The basic ink formulation is compatible with a wide range of compositions using the LIG as an attractive conductive filler.

Substrate versatility: Unlike direct-laser writing, which is limited to polymeric substrates and several biomasses, the LIG ink can be printed on almost any stretchable and non stretchable substrate, such as polymeric substrates, fabrics, or textiles.

"During the development of our new supercapacitor, we discovered a specific synergic effect between polymeric binders poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with Polyurethane (PU), PEDOT:PSS-PU and graphene sheets in producing exceptional electromechanical performances," adds Fernando Soto, a co-author of the paper. "We realized that when both sides of the graphene sheets are thoroughly covered with the conductive/elastic PEDOT:PSS/PU polymer, it results in a robust composite that withstands severe shear stresses during stretching."

"Not only that, but it also maintains above 85% of its electrochemical performance such as its charge storing capacitance properties, composite conductivity and electrochemical stability at high charge-discharge cycles," he adds.

In developing wearable electronic devices, researchers need to deal with a range of issues where stretchability and mechanical performance of the device is as important as its electronic properties such as conductivity, charge storage properties and, generally, its high electrochemical performance.

Rather than focusing on one of these specific problems, the team's work addresses a series of challenges that include high mechanical and electrochemical performance while keeping the costs at their lowest possible point for realistic commercialization scenarios.

"From the design to the implementation stages of our study, the primary focus has been devoted to scalability, versatility and cost efficiency of a high performance platform that can potentially spark further innovations using nanocomposite materials in the field of wearable electronics," notes Tehrani.

The next stages of the team's work in this area of wearable applications will see the integration of these high-performance S-MSCs with batteries and energy harvesting systems such as biofuel cells, triboelectrics, and piezoelectrics.

Tags:  Farshad Tehrani  Graphene  Joseph Wang  nanocomposites  nanoelectronics  Sensors  UC San Diego 

Share |
PermalinkComments (0)
 

Light-driven artificial muscle made with nanomaterials

Posted By Graphene Council, Monday, April 22, 2019
Updated: Saturday, April 20, 2019

Reporting their findings in Advanced Materials ("Plasmonic-Assisted Graphene Oxide Artificial Muscles"), researchers in China have developed a plasmonic-assisted holistic artificial muscle that can independently act as a fully functional motor system without assembling or joints.

The artificial muscle's low-cost integrated design consists of a composite layer uniform bilayer configuration made of gold nanorods embedded in graphene oxide or reduced graphene oxide and a thermally expansive polymer layer (PMMA).

The gold nanorods of varying aspect ratios endow the graphene nanocomposites with tunable wavelength response. This enables the fabrication of a light-sensitive artificial muscle that can perform complex limb-like motions without joints.

Combining the synergistic effect of the gold nanorods' high plasmonic property and wavelength selectivity with graphene's good flexibility and thermal conductivity, the artificial muscle can implement full-function motility without further integration, which is reconfigurable through wavelength-sensitive light activation.

Upon photothermal heating, the mismatch between the deformations of two layers leads to significant bending, replicating the muscle-like contraction from one layer and expansion from the other.

To demonstrate the light-addressable manipulation of complicated multiped robot, the team developed a holistic spider robot.

They patterned each leg of the spider with three nodes (see figure g above). Despite that the spider has been patterned on 2D film, it can deform into 3D structures under light irradiation due to the bending of its legs.

When the laser beam irradiates the legs one by one, the legs bend one after another, which induced the displacement of the gravity center of the spider accordingly. In this way, the researchers could control the spider robot to lean forward and move toward the right direction at an average speed of 2.5 mm per second.

The authors conclude that their work bridges the gap between ideal request and realistic restrictions of biomimetic motor systems, and decreases the amount of discrete parts, the number of postprocessing steps, and the fabrication time, and thereby offers new opportunities for biological aid and for biomimetic mini robots to be remotely operated.

Tags:  artificial muscle  Graphene  graphene oxide  nanocomposites 

Share |
PermalinkComments (0)
 

Graphene Lays Foundation for Fast Charging High Capacity Li-ion Batteries

Posted By Dexter Johnson, IEEE Spectrum, Thursday, June 14, 2018

Prof. Dina Fattakhova-Rohlfing. (Image: FZ Juelich)

Graphene has been earmarked for energy storage applications for years. The fact that graphene is just surface area is very appealing to battery applications in which anodes and electrodes store energy in the material that covers them.

With lithium ion (Li-ion) batteries representing the most ubiquitous battery technology, with uses ranging from our smart phones to electric cars, increasing their storage capacity and shortening their charging times with graphene has been a big research push. 

Unfortunately, the prospects for graphene in energy storage have been stalled for years. This is in part due to the fact that while graphene is all surface area, in order to get anywhere near the kind of storage capacity of today’s activated carbon you need to layer graphene. The result after enough layering is you end up back with graphite, defeating the purpose of using graphene in the first place.

Now a team of German researchers has developed an approach for improving the anodes of Li-ion batteries that uses graphene in support of tin oxide nanoparticles.

"In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions," said Dian Fattakhova-Rohlfing, a researcher at Forschungszentrum Jülich research institute in Germain, in a press release. "Pure tin oxide, however, exhibits very weak cycle stability – the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling."

The research described in the Wiley journal Advanced Functional Materials, uses graphene as a base layer in a hybrid nanocomposite in which the tin oxide nanoparticles enriched with antimony are layered on top of the graphene. The graphene provides structural stability to the nanocomposite material.

The combination of the tin oxide nanoparticle being enriched with antimony makes them extremely conductive, according to Fattakhova-Rohlfing. "This makes the anode much quicker, meaning that it can store one-and-a-half times more energy in just one minute than would be possible with conventional graphite anodes. It can even store three times more energy for the usual charging time of one hour."

The scientists found that in contrast to most batteries the high energy density did not have to come with very slow charging rates. Anybody who has a smartphone knows how long it takes to charge it to 100 percent.

"Such high energy densities were only previously achieved with low charging rates," says Fattakhova-Rohlfing. "Faster charging cycles always led to a quick reduction in capacity."

In contrast, the research found that their antimony-doped anodes retain 77 percent of their original capacity even after 1,000 cycles.

Because tin oxide is abundant and cheap, the scientists claim that the nanocomposite anodes can be produced in an easy and cost-effective way.

Fattakhova-Rohlfing added: "We hope that our development will pave the way for lithium-ion batteries with a significantly increased energy density and very short charging time."

Tags:  energy storage  Li-ion batteries  nanocomposites  nanoparticles 

Share |
PermalinkComments (0)