Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.


Search all posts for:   


Top tags: Graphene  2D materials  Batteries  Sensors  Li-ion batteries  University of Manchester  CVD  Electronics  First Graphene  graphene production  nanomaterials  graphene oxide  The Graphene Flagship  coatings  graphite  Applied Graphene Materials  Energy Storage  Haydale  Carbon Nanotubes  composites  Andre Geim  Battery  biosensors  Gratomic  Hexagonal boron nitride  optoelectronics  Standards  Versarien  3D Printing  Adrian Potts 

Laser-induced graphene composites are eminently wearable

Posted By Graphene Council, The Graphene Council, Monday, June 24, 2019
Graphene has a unique combination of properties that is ideal for next-generation electronics, including mechanical flexibility, high electrical conductivity, and chemical stability. The burgeoning field of wearable electronics – 'smart' fabrics with invisibly integrated energy harvesting, energy storage, electronics and sensor systems – benefits from graphene in numerous ways. Graphene materials, be they pristine or composites, will lead to smaller high-capacity and fast-charging supercapacitors, completely flexible and even rollable electronics and energy-storage devices, and transparent batteries.

To realize the commercial potential of graphene, it is necessary to develop reliable, cost-effective and facile processes for the industry-scale fabrication of graphene-based devices.

One possible route is inkjet printing, already extensively demonstrated with conductive metal nanoparticle inks. Although liquid-phase graphene dispersions have been demonstrated, researchers are still struggling with sophisticated inkjet printing technologies that allow efficient and reliable mass production of high-quality graphene patterns for practical applications.

A novel solution comes from the team at Joseph Wang's Laboratory for Nanobioelectronics at UC San Diego. Reporting their findings in Advanced Materials Technologies ("Laser-Induced Graphene Composites for Printed, Stretchable, and Wearable Electronics"), they demonstrate the synthesis of high-performance stretchable graphene ink using a facile, scalable, and low-cost laser induction method for the synthesis of the graphene component.

As a proof-of-concept, the researchers fabricated a stretchable micro-supercapacitor (S-MSC) demonstrating the highest capacitance reported for a graphene-based highly stretchable MSC to date. This also is the first example of using laser-induced graphene in the form for a powder preparation of graphene-based inks and subsequently for use in screen-printing of S-MSC.

Back in 2014, researchers at Rice University created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser, a technique they called laser-induced graphene (LIG). This high-yield and low-cost graphene synthesis process works in air at room temperature and eliminates the need for hot furnaces and controlled environments, and it makes graphene that is suitable for electronics or energy storage.

"LIG can be prepared from a few polymeric substances, such as Kapton polyimide and polyetherimide, as well as various sustainable biomasses, including wood, lignin, cloth, paper, or hydrothermal carbons," Farshad Tehrani, the paper's first author. "On the other hand, LIG has considerably enhanced dispersion in typical solvent and binders due to its inherently abundant defects and surface functional groups."

He points out that the team's novel method, while maintaining the distinct advantages of the direct-written LIG, unlocks untapped potentials of the LIG material in several areas:

Mechanical stretchability: In this study, the inherently brittle and mechanically fragile LIG electrodes are turned into a mechanically robust, highly stretchable electrodes, with the new ink attractive for diverse wearable electronic devices.

Enhanced electrochemical performance: The areal capacitance of the team's S-MSC has far surpassed that of direct-written laser LIG and has produced the highest areal capacitance reported for highly stretchable supercapacitors.

Customized composite formulations: The basic ink formulation is compatible with a wide range of compositions using the LIG as an attractive conductive filler.

Substrate versatility: Unlike direct-laser writing, which is limited to polymeric substrates and several biomasses, the LIG ink can be printed on almost any stretchable and non stretchable substrate, such as polymeric substrates, fabrics, or textiles.

"During the development of our new supercapacitor, we discovered a specific synergic effect between polymeric binders poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with Polyurethane (PU), PEDOT:PSS-PU and graphene sheets in producing exceptional electromechanical performances," adds Fernando Soto, a co-author of the paper. "We realized that when both sides of the graphene sheets are thoroughly covered with the conductive/elastic PEDOT:PSS/PU polymer, it results in a robust composite that withstands severe shear stresses during stretching."

"Not only that, but it also maintains above 85% of its electrochemical performance such as its charge storing capacitance properties, composite conductivity and electrochemical stability at high charge-discharge cycles," he adds.

In developing wearable electronic devices, researchers need to deal with a range of issues where stretchability and mechanical performance of the device is as important as its electronic properties such as conductivity, charge storage properties and, generally, its high electrochemical performance.

Rather than focusing on one of these specific problems, the team's work addresses a series of challenges that include high mechanical and electrochemical performance while keeping the costs at their lowest possible point for realistic commercialization scenarios.

"From the design to the implementation stages of our study, the primary focus has been devoted to scalability, versatility and cost efficiency of a high performance platform that can potentially spark further innovations using nanocomposite materials in the field of wearable electronics," notes Tehrani.

The next stages of the team's work in this area of wearable applications will see the integration of these high-performance S-MSCs with batteries and energy harvesting systems such as biofuel cells, triboelectrics, and piezoelectrics.

Tags:  Farshad Tehrani  Graphene  Joseph Wang  nanocomposites  nanoelectronics  Sensors  UC San Diego 

Share |
PermalinkComments (0)

Light-driven artificial muscle made with nanomaterials

Posted By Graphene Council, The Graphene Council, Monday, April 22, 2019
Updated: Saturday, April 20, 2019

Reporting their findings in Advanced Materials ("Plasmonic-Assisted Graphene Oxide Artificial Muscles"), researchers in China have developed a plasmonic-assisted holistic artificial muscle that can independently act as a fully functional motor system without assembling or joints.

The artificial muscle's low-cost integrated design consists of a composite layer uniform bilayer configuration made of gold nanorods embedded in graphene oxide or reduced graphene oxide and a thermally expansive polymer layer (PMMA).

The gold nanorods of varying aspect ratios endow the graphene nanocomposites with tunable wavelength response. This enables the fabrication of a light-sensitive artificial muscle that can perform complex limb-like motions without joints.

Combining the synergistic effect of the gold nanorods' high plasmonic property and wavelength selectivity with graphene's good flexibility and thermal conductivity, the artificial muscle can implement full-function motility without further integration, which is reconfigurable through wavelength-sensitive light activation.

Upon photothermal heating, the mismatch between the deformations of two layers leads to significant bending, replicating the muscle-like contraction from one layer and expansion from the other.

To demonstrate the light-addressable manipulation of complicated multiped robot, the team developed a holistic spider robot.

They patterned each leg of the spider with three nodes (see figure g above). Despite that the spider has been patterned on 2D film, it can deform into 3D structures under light irradiation due to the bending of its legs.

When the laser beam irradiates the legs one by one, the legs bend one after another, which induced the displacement of the gravity center of the spider accordingly. In this way, the researchers could control the spider robot to lean forward and move toward the right direction at an average speed of 2.5 mm per second.

The authors conclude that their work bridges the gap between ideal request and realistic restrictions of biomimetic motor systems, and decreases the amount of discrete parts, the number of postprocessing steps, and the fabrication time, and thereby offers new opportunities for biological aid and for biomimetic mini robots to be remotely operated.

Tags:  artificial muscle  Graphene  graphene oxide  nanocomposites 

Share |
PermalinkComments (0)

Graphene Lays Foundation for Fast Charging High Capacity Li-ion Batteries

Posted By Dexter Johnson, IEEE Spectrum, Thursday, June 14, 2018

Prof. Dina Fattakhova-Rohlfing. (Image: FZ Juelich)

Graphene has been earmarked for energy storage applications for years. The fact that graphene is just surface area is very appealing to battery applications in which anodes and electrodes store energy in the material that covers them.

With lithium ion (Li-ion) batteries representing the most ubiquitous battery technology, with uses ranging from our smart phones to electric cars, increasing their storage capacity and shortening their charging times with graphene has been a big research push. 

Unfortunately, the prospects for graphene in energy storage have been stalled for years. This is in part due to the fact that while graphene is all surface area, in order to get anywhere near the kind of storage capacity of today’s activated carbon you need to layer graphene. The result after enough layering is you end up back with graphite, defeating the purpose of using graphene in the first place.

Now a team of German researchers has developed an approach for improving the anodes of Li-ion batteries that uses graphene in support of tin oxide nanoparticles.

"In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions," said Dian Fattakhova-Rohlfing, a researcher at Forschungszentrum Jülich research institute in Germain, in a press release. "Pure tin oxide, however, exhibits very weak cycle stability – the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling."

The research described in the Wiley journal Advanced Functional Materials, uses graphene as a base layer in a hybrid nanocomposite in which the tin oxide nanoparticles enriched with antimony are layered on top of the graphene. The graphene provides structural stability to the nanocomposite material.

The combination of the tin oxide nanoparticle being enriched with antimony makes them extremely conductive, according to Fattakhova-Rohlfing. "This makes the anode much quicker, meaning that it can store one-and-a-half times more energy in just one minute than would be possible with conventional graphite anodes. It can even store three times more energy for the usual charging time of one hour."

The scientists found that in contrast to most batteries the high energy density did not have to come with very slow charging rates. Anybody who has a smartphone knows how long it takes to charge it to 100 percent.

"Such high energy densities were only previously achieved with low charging rates," says Fattakhova-Rohlfing. "Faster charging cycles always led to a quick reduction in capacity."

In contrast, the research found that their antimony-doped anodes retain 77 percent of their original capacity even after 1,000 cycles.

Because tin oxide is abundant and cheap, the scientists claim that the nanocomposite anodes can be produced in an easy and cost-effective way.

Fattakhova-Rohlfing added: "We hope that our development will pave the way for lithium-ion batteries with a significantly increased energy density and very short charging time."

Tags:  energy storage  Li-ion batteries  nanocomposites  nanoparticles 

Share |
PermalinkComments (0)