Print Page | Contact Us | Report Abuse | Sign In | Register
Graphene Updates
Blog Home All Blogs
The latest news and information on all aspects of graphene research, development, application and commercialization.

 

Search all posts for:   

 

Top tags: Graphene  2D materials  Sensors  Batteries  nanomaterials  University of Manchester  CVD  First Graphene  Electronics  Li-ion batteries  coatings  graphene oxide  graphene production  The Graphene Flagship  Applied Graphene Materials  Carbon Nanotubes  composites  Energy Storage  Graphene Flagship  graphite  Haydale  Healthcare  optoelectronics  3D Printing  Battery  biosensors  ICFO  photonics  polymers  Semiconductor 

2D FAB TAKES GRAPHENE TO NEW HEIGHTS

Posted By Graphene Council, The Graphene Council, Thursday, October 24, 2019
When an aircraft is struck by lightning, the results are often harrowing for its passengers and potentially destructive for the vehicle. Together with SAAB and Blackwing Sweden, 2D fab has developed new components for the aviation industry that offer increased lightning strike protection and strength.

The project, called Multigraph, was launched in 2017 with the mission to create better components for the aviation industry. The aim was to use graphene’s multifunctional properties to increase the mechanical strength and electrical conductivity of the materials used, the latter reducing the amount of maintenance required due to lightning strikes.

Enhanced strength by graphene comes with more durable materials and lighter weights – which lowers fuel consumption. What electrical conductivity does, among other things, is to redistribute the energy from the point of impact of a lightning strike, which decreases damage. Something that is especially important where the different segments attach to each other, for example where the wings connect to the airframe.

Aeronautics implementation a milestone for graphene use Multigraph, partly financed by Vinnova, is a collaboration between 2D fab, SAAB, Blackwing Sweden, Chalmers and two Brazilian universities (UFABC and ITA). The results – presented October 10th at the Brazilian-Swedish workshop on aeronautics in Stockholm – are to be considered a success: by adding graphene to the polymers used, electrical conductivity and strength both improved. 2D fab’s CEO Sven Forsberg, is pleased with the results.

– This project shows that graphene works, and that there is huge potential for this material. It also brings graphene yet another step closer to the market.

2D fab and SAAB have been granted renewed funding from Vinnova and will continue working toward better components for the aviation industry.

Tags:  2D fab  Aviation  Blackwing Sweden  Graphene  polymers  SAAB  Sven Forsberg 

Share |
PermalinkComments (0)
 

Colloids funds graphene nanocomposites collaborative Ph.D research project with The University of Manchester

Posted By Graphene Council, The Graphene Council, Thursday, October 17, 2019
Updated: Thursday, October 17, 2019
Colloids Group, a leading manufacturer of innovative masterbatches, compounds, and performance enhancing additives, is funding a joint collaborative Ph.D. research project with the Graphene Engineering Innovation Centre (GEIC) at The University of Manchester. The centre specialises in the rapid development and scale up of graphene and other 2D materials applications and focuses on several application areas to rapidly accelerate the development and commercialisation of new graphene technologies.The GEIC is an industry-led innovation centre, designed to work in collaboration with industry partners to create, test and optimise new concepts for delivery to market, along with the processes required for scale up and supply chain integration.

Phase 1 of this collaborative project was successfully completed within 12 months. Phase 2, which is about to start, is expected to be a three to four year research project. For this next phase, Colloids is funding and supporting a full time Ph.D. researcher who will be based at University of Manchester with the Advanced nanomaterials Group led by Dr. Mark A. Bissett and Professor Ian A. Kinloch. The Ph.D. researcher will also be working with and supervised by key Colloids’ R & D people involved in the project.  

The potential benefits of 2D thermoplastic nanocomposites have long been recognized. The project team will investigate the applicability of nanocomposites based on graphene and other two-dimensional (2D) materials to a broad range of thermoplastic materials, including polyolefins, polyamides and polyesters, and to understand how mechanical, thermal, electrical, rheological and gas-barrier properties (among others) are affected by the production process and by the materials used.  

The main goal of this collaborative Ph.D. research project is to develop and upscale new polymer-graphene nanocomposites with enhanced properties and multifunctional capabilities that are not currently available. Key target markets for ‘next generation’graphene nanocomposite Colloids products include automotive, aerospace, electronics and electrical.

As the research project is through Graphene@Manchester, the collaborative project teambenefits from access to the extensive graphene research facilities at The University of Manchester: the National Graphene Institute (NGI), the Graphene Engineering Innovation Centre (GEIC), and theHenry Royce Institute. The University of Manchesteris a globally recognized centre of excellence for cutting edge graphene research, building upon the published work by Professor Andre Geim and Professor Konstantin Novoselov, who won the Nobel Prize in Physics in 2010 for isolating, characterising and contacting ground-breaking experiments regarding the two-dimensional material graphene.

Colloids Group is exhibiting with parent company, TOSAF Group Ltd. (Booth# Hall 8a / D01) at the K’19 Plastics & Rubber exhibition in Dusseldorf, Germany, which runs from 16-23 October 2019. Show visitors from companies interested in the graphene nanocomposites collaborative project can speak with technical people from the Colloids’ team who will be at the show.

Tags:  2D materials  Colloids Group  Graphene  Ian A. Kinloch  Mark A. Bissett  nanocomposites  nanomaterials  polymers  University of Manchester 

Share |
PermalinkComments (0)
 

Using 3-D Printed Mother-of-Pearl to Create Tough New Smart Materials

Posted By Graphene Council, The Graphene Council, Monday, August 12, 2019

The silvery shine of mother-of-pearl has long been prized for jewelry and decorative arts. But the interior of mollusk shells, also known as nacre, is more than just a pretty face. It is actually one of the most robust materials in the natural world. You can drive over nacre with a truck, and while the mollusk shell might crack under the weight, the shiny interior will stay intact.



Professor in the Daniel J. Epstein Department of Industrial and Systems Engineering and the Center for Advanced Manufacturing, Yong Chen and his team have created a new 3-D-printed replica of this natural super-material, which will have important new applications in responsive smart materials and safety devices, such as helmets and armor for sports or military, as well as smart wearable technology, biomedical devices and more.

The work, which was recently published in Science Advances, also represents the first time that electrical fields were used in 3-D printing to form the material, meaning the finished product has strong electrical conductivity. This makes it ideal for smart products.

Chen and postdoctoral researcher Yang Yang worked on the paper with co-authors Qiming Wang, Assistant Professor in the Sonny Astani Department of Civil and Environmental Engineering, Qifa Zhou, Professor of Ophthalmology and Biomedical Engineering and others.

Chen said that in nature, the main purpose of a material like nacre is to protect a delicate, soft-bodied creature inside the shell.

“Nacre is strong because it stacks microscale and nanoscale components together in a brick-like structure and uses soft material to bind them together.”

Chen said the result was a very lightweight, robust material that was also far more responsive to pressure and loading compared with more rigid materials like ceramic and glass.

“Even very strong glass can be easy to crack when you drop it. Microcracks on the surface of these materials can quickly propagate all the way through it, whereas nacre combines soft and hard material in an intelligent way,” Chen said.

He said that when microcracks form in nacre, the soft material binding the nacre together works to deflect the force of impact and prevent cracks from propagating into more serious damage.

“The main motivation for this research was to see whether we could 3-D print any shape at a microscale, using the architecture of nacre combining both hard and soft materials, to achieve a much tougher structure.”

Replicating nacre with graphene and polymer
To do this, the team used a novel method to build synthetic nacre at a microscale using graphene powder as a building block. The researchers ran an electrical charge of around 1,000 volts through the graphene.

“Originally we had this randomly distributed graphene,” Chen said. “When you add it to the electrical field, these random grains of graphene are aligned parallel to each other.”

“Then we cure the material and finalize the layer. We then stack layer after layer on top so that it is similar in microstructure to nacre,” Chen said.

“We create a composite with polymer, which serves as the soft material inside and between the graphene.”

Chen said that previously nacre-like materials were formed using different approaches, such as magnetic fields to align the particles. After fabrication, the research team conducted material testing that showed the electrically-aligned product was lightweight with strong engineering properties.

He said that while naturally-formed nacre doesn’t conduct electricity, the 3-D printed bioinspired version can. As such, if it were used to fabricate protective material such as helmets or armor, the synthetic nacre can act as a sensor that alerts the wearer of any structural weaknesses before it fails.

The team tested the material by creating a small scale model of a smart helmet. The helmet functioned as a sensor connected to a LED light. When enough pressure was put on the helmet, the LED would be activated, indicating the material was under stress.

“Using the electrical-aligned approach leads to better alignment of the particles. It also means we can work with particles that react to an electrical field. When you use a magnetic field, then you can only work with a particle that reacts to that.”

Chen said that for the next stage of the research, the team would be investigating the new material’s capacity for thermal conductivity, in addition to its mechanical strength and ability to conduct electricity.

Tags:  3D Printing  Graphene  polymers  Qifa Zhou  USC Viterbi School of Engineering  Yong Chen 

Share |
PermalinkComments (0)
 

Graphene infrared radiation shielding

Posted By Graphene Council, The Graphene Council, Monday, July 22, 2019
Updated: Thursday, July 18, 2019

Scientists of the Warsaw University of Technology Faculty of Chemistry and Process Engineering use graphene oxide and graphene-related compounds to develop new materials for infrared radiation protection. Their IR-GRAPH Project was funded by the National Centre for Research and Development (NCBR).

“We want our materials to act as a barrier to both heath absorption and release,” says Marta Mazurkiewicz-Pawlicka, Ph.D. Eng., who supervised the work. “They are composites. We create them of polymers, using two types at this time. We use graphene materials with added metal oxides, such as titanium oxide, as the filler.”

Such a combination provides efficient screening. “Graphene materials are added to absorb radiation while metal oxides are supposed to disperse it,” explains the researcher.

Competitive Material

The market already offers, for example, window films for radiation protection. However, the materials developed by the scientists of the Warsaw University of Technology can compete with them. “They contain about 5% of added filler to reduce the temperature by a few degrees Celsius,” says Doctor Mazurkiewicz-Pawlicka. “We obtain similar results by adding 0.1%, that is 50 times less, of the filler.”

But for now, the team is focused on the materials alone rather than on specific applications. And potential applications are quite easy to see, just to mention windows as well as façades or even fabrics. The materials would protect against heat losses in winter and they would prevent overheating in summer.

For buildings or vehicles, that could mean an alternative to the now common air-conditioning systems, which as we know are extremely energy-intensive. The greater the desired modification of the ambient temperature in a room, the more energy is needed to achieve it. A less energy-intensive support would bring savings in the budget and benefits to the environment.

Looking into the future

Warsaw University of Technology scientists have carried out short-term tests. The results are promising but still a number of aspects must be investigated further, e.g. the polymer performance under UV radiation or at elevated temperatures or at a modified humidity. It is important to test the existing solutions both under various conditions and over a long time. Such testing could be done in a climatic chamber where a material sample could be placed and monitored.

“For instance, we have to work on the color to be able to use our materials in window films as the current color, which is in shades of grey, obscures visibility,” says Doctor Mazurkiewicz-Pawlicka. “We want to find new polymers that could be used as warp in our materials.”

A Collaborative Act

The team led by Doctor Mazurkiewicz-Pawlicka included Leszek Stobiński, Ph.D., D.Sc., Artur Małolepszy, Ph.D. and a group of students working on their engineer’s or master’s theses under the project. Members of the Chemical and Process Engineering Student Research Group also made a contribution. “They have built a device to measure how efficient our films are,” says Doctor Mazurkiewicz-Pawlicka. “It comprises an infrared lamp and a sensor which measures the degrees of temperature reduction.”

The WUT scientists closely collaborated with Tatung University, Taiwan, under the IR-GRAPH project. They also received support of the University of Warsaw Faculty of Physics. “Faculty Dean Prof. Dariusz Wasik and Andrzej Witowski, Ph.D., D.Sc., are experts in solid-state physics and they have carried out spectrometer measurements for us”, says Doctor Mazurkiewicz-Pawlicka.

Why IR screening?

Graphene is mainly associated with electronics and automation applications. Graphene use for radiation screening has not been that common yet. “There are references reporting that graphene can offer screening against electromagnetic radiation,” says Doctor Mazurkiewicz-Pawlicka. “This aspect is widely researched in the context of microwave radiation and, recently, also terahertz radiation, primarily for military applications. We thought we could investigate graphene properties for infrared radiation as this is quite an unexplored territory.

Infrared radiation has the wavelength ranging from 780 nanometers to 1 millimeter. It combines with the visible light and UV radiation to create the spectrum of sunlight. Excessive sunlight has a harmful effect on human skin. As much as 50% of sunlight which reaches the Earth’s surface is infrared radiation (which can be felt as heat). That is why IR screening is vital.

Tags:  Andrzej Witowski  Artur Małolepszy  Dariusz Wasik  Graphene  Leszek Stobiński  Marta Mazurkiewicz-Pawlicka  National Centre for Research and Development  polymers  Warsaw University of Technology 

Share |
PermalinkComments (0)
 

Talga and Biomer sign Joint Development Agreement for Graphene in Thermoplastics

Posted By Terrance Barkan, Tuesday, September 4, 2018

Australian advanced materials technology company, Talga Resources Ltd (“Talga” or “the Company”) (ASX:TLG) announced it has signed a Joint Development Agreement (“JDA”) with Biomer Technology Ltd (“Biomer”), a UK based polymer manufacturing and technology company, to co-develop graphene-enhanced thermoplastics for potential commercialisation in the healthcare and coating markets.

This initiative is in the composites sector under Talga’s graphene commercialisation strategy.

Highlights of the JDA include:

  • Creation of new multifunctional thermoplastic polyurethanes incorporating Talga functionalised graphene (“Talphene®”) in Biomer polymers.

  • Includes terms for evaluation, five (5) years exclusive supply in the event of commercialisation of products and intellectual property ownership.

  • Commercialisation of successful products for targeted biomedical and coating applications can be facilitated through Biomer’s existing global-scale commercial clients.

    Under the terms of the JDA Biomer will design and synthesise thermoplastic polyurethanes (“TPU”) incorporating Talga’s graphene (“Talphene®”) products for evaluation in biomaterial (medical devices) and industrial coating (marine anti-fouling) amongst other applications.

    The incorporation of amounts of Talphene® into Biomer’s proprietary TPU is expected to improve a range of key performance characteristics including:

chemical resistance

mechanical strength

wear & abrasion resistance

biocompatibility/biofouling

surface finish

electrical conductivity

 

The Talphene® enhanced TPU will be evaluated alongside Biomer’s commercially available TPU and other polymers under development with Biomer’s global industrial partners.


Talga Managing Director Mark Thompson: “Talga is excited to enter this agreement with Biomer that provides an accelerated path to new polyurethane products and expanded commercial opportunities. Biomer has an extensive network of advanced polymer materials technologies experts and commercial/customer relationships that can be leveraged to accelerate Talphene® into the world of polyurethane products.

We look forward to working with Biomer through the JDA to incorporate Talphene® into Biomer products with a view to enhancing people’s lives through advanced biomedical healthcare products, reducing eco-impacts of ship coatings in the marine environment and improvements to many other polyurethane based products”.

Biomer Managing Director Simon Dixon: “Biomer are excited to work with Talga on the significant potential for graphene in our proprietary high performance polymers and the opportunities it presents for advancing both design and manufacturing in the biomedical and specialty industrial market sectors.

Understanding the technological capabilities for graphene is fundamental to unlocking the potential for this material. We look forward to working with Talga’s research team in Cambridge and its unique functionalised graphene formulations which, through the JDA, will provide the ideal platform to realise these opportunities.”

page2image71556592

Background and Agreement

Graphene is carbon and humans are carbon based. Thus graphene enhanced polymers have the potential to provide reduced implant rejection sensitivity and improve biocompatibility, more durable plastic components for joint and vascular replacements, and utilise graphene’s self- healing properties and electrical conductivity to enhance a host of biomedical applications. Inversely it may be engineered to have biocidal properties, providing a potential pathway to metal-free anti-foul marine coatings.

The market potential is significant with the existing thermoplastic polyurethane market size exceeding 21.7 million tonnes productsand total market value c.US$57.8 billionincluding, automotive, aerospace, coatings, healthcare products, and many other applications.

Preparation of functionalised formulations for incorporation with Biomer products and testing is planned to commence next month. Talga Technologies Limited (Cambridge, UK) will prepare and supply the Talphene® products and interface with Biomer staff to fulfil work programme outcomes and deliverables.

Under the JDA Talga and Biomer will co-fund R&D, material supply prototype development, manufacturing process development, and internal and external testing. Biomer’s target customers have also agreed to participate in product testing programs. Anticipating successful outcomes the companies have agreed in advance to incorporate commercial terms that include minimum 5 year exclusive supply of Talga graphene on jointly developed products, and terms of intellectual property rights. Other commercial terms including pricing are to be further agreed and specified during product development.

Tags:  Biomer  polymers  Talga  Thermoplastics 

Share |
PermalinkComments (0)
 

NanoXplore Brings Unique Perspective to Graphene Production

Posted By Dexter Johnson, IEEE Spectrum, Thursday, January 26, 2017

 

After Montreal-based NanoXplore launched in 2011, its initial business was contract research in the field of carbon-based technologies. But its identity as a contract R&D company changed in 2014 when it filed a series of patents focused on graphene production.

As the company further developed its technology since then, the main focus of the company has become providing graphene-enhanced polymers for plastics that have enhanced electrical, thermal and mechanical properties.

The company website suggests that these graphene-based polymers have a variety of applications, ranging from photovoltaics to supercapacitors

We wanted to get to know how a relatively new company that started out as an R&D contractor evolved into a graphene-enhanced polymer manufacturer and how they now see the downstream market for their product. To do that, we took the opportunity of NanoXplore becoming a corporate member of The Graphene Council to talk to the company’s chief operating officer, Paul Higgins, and here is that interview.

Q: NanoXplore started out as an R&D contractor in carbon-based technologies. How is it that the company was able to file a patent in graphene production patent just two years after being formed? Were you always doing research in this area, or did you make a concerted effort to find a place in the graphene market?

Working with other carbon-based materials, especially CNTs, it became evident that many commercialization challenges were due to the production processes. The processes had been developed in research environments and were not designed from the ground up with an industrial mindset. We focused from the beginning on low cost, high-yield processes, using existing capital equipment, and with no pre- and post-processing. For example, our graphene production process functionalizes the graphene in-situ, avoiding costly functionalization post-processing for most applications. We were also very cognizant of the need for sustainable, “green” processes; our patented process is water-based, uses no strong acids, and no organic solvents.

A key insight underpinning our patents is that high energy and strong chemical processes create many downstream problems in graphene production. High-energy processes are inefficient and create defected planar structures, resulting in graphene with poor electrical and thermal benefits, in turn requiring high, non-economic loadings of graphene in nanocomposites.  Strong chemical processes require complicated post-processing and recycling processes to be cost effective and require very tightly controlled production environments, adding costs.

Once we had established the frame of potential solutions based upon the above, developing our new technology platform was relatively straightforward.

Q: Were you looking to enter a particular niche of the graphene supply chain or did the process you came up with dictate somewhat the point in the supply chain that you now occupy?

Our process is high yield, large volume, low cost, and produces graphene powder with very high quality. This allows us to target mass industrial material markets such as polymers, markets requiring large volumes of material. And due to the quality of our graphene, we can provide significant benefit to industrial materials at low loadings and viable price points.

Of course, the graphene must be effectively mixed into the polymer matrix. To do this we have developed production processes for the manufacture of graphene-enhanced plastic masterbatches. These masterbatches, which we have been manufacturing and selling since early 2016, are the perfect form factor for the plastic industry. Plastic formers, such as injection and blow molders, and compounders are very comfortable with masterbatches and easily incorporate them into their existing processes.

Q: Do you see the company evolving to develop products further up the supply chain? For instance, it appears you’re involved in energy storage technologies enabled by graphene. Is this where you see your business moving or do you see this is just diversification of your portfolio?

NanoXplore is focusing our current commercial efforts on graphene-enhanced polymers. We see this as a large market, hungry for innovative materials, where our graphene has a strong competitive advantage.

We also have a patent on a unique graphene-graphite composite material that is useful for energy storage applications. This material was the impetus for our original research in the energy field. This initial research showed great promise and leads us into development of a range of materials for Si-graphene anodes and S-graphene cathodes.

From our current polymer efforts and the emerging energy storage materials, we see a sustainable growth model for the company. Our core research efforts develop graphene-based technologies for a target market, and then transition to product development. During the transition, we will develop technologies for the next target industry. And repeat. Graphene is so broadly applicable that we foresee being able to continue in this vein for some time.

Q: How does your company envision the landscape for the graphene market evolving over the next five years, i.e. are there particular markets that will be winners and losers, what applications are not being sufficiently targeted, etc.?

The graphene market has changed significantly over the last three years. Three years ago the challenge for end users was to obtain decent material, in volume, at a reasonable price. Today there are several producers, including NanoXplore, producing large volumes of good quality graphene. Prices per kg for high quality graphene have fallen during this period from $30,000 kg to $100 Kg and are set to fall to $30 kg over the next five years.

[NB: Above and subsequent comments pertain to high quality - low defect, functionalized few layer graphene and graphene nanoplatelets. Graphene from CVD is excluded as is reduced Graphene Oxide (rGO)].

The current challenge for the graphene industry is to incorporate graphene into real-world products and industrial processes. One of the major hurdles is that graphene is sold into a supply chain, with many players between the graphene producer and the final product. And each of these players has their own calculus of risk versus benefit. To be successful the graphene producer must demonstrate benefits to each player at every step along the supply chain, while meeting standards, helping to modify processes, overcoming regulatory hurdles and minimising supply chain disruptions. The successful companies will expand to cover several steps in the supply chain – for example graphene material, polymer compounds, plastic forming – and develop partnerships with other key supply chain players.

Over the next 3-5 years, one can imagine the commercial introduction of novel graphene enabled subsystems and systems. This category of products will include strong, light weight and highly functional nanocomposites for electric transportation vehicles, greatly improved energy systems (e.g., next generation batteries), high barrier packaging, smart textiles, and others. Solutions for highly regulated industries (e.g., medical, aerospace), some being demonstrated today, will start to exit their testing regimes and enter the marketplace.

Ultimately graphene will be part of building a sustainable future, playing a significant role in the replacement of costly, single function, or scarce materials with abundant, cheaper, and higher-performing ones. It will replace multiple and occasionally toxic additives with a single multi-functional material. It will reduce weight while increasing strength for a wide range of structural polymers and composites often leading to significant fuel savings in vehicles. It will extend the useful lifetime of paints, coatings and lubricants. And it will improve thermal management and energy storage in a wide range of applications, again improving efficiency while husbanding scarce resources.

NanoXplore is very well positioned to help customers participate in this emerging new world. With the combination of high quality graphene material, expertise in mixing graphene with a wide array of industrial materials, and a team of seasoned business leaders and material scientists with broad industrial experience, NanoXplore enables customers to achieve significant and affordable product improvements with very little added graphene.

Tags:  masterbatches  photovoltaics  polymers  supercapacitors 

Share |
PermalinkComments (0)